
SUCTION FILTERS

A WORLDWIDE LEADER IN THE FIELD OF HYDRAULIC FILTRATION EQUIPMENT.

Our company started life in 1964, when Bruno Pasotto decided to attempt to cater for the requests of a market still to be fully explored, with the study, design, development, production and marketing of a vast range of filters for hydraulic equipment, capable of satisfying the needs of manufacturers in all sectors. The quality of our products, our extreme competitiveness compared with major international producers and our constant activities of research, design and development has made us a worldwide leader in the field of hydraulic circuit filtering. Present for over 50 years in the market, we have played a truly decisive role in defining our sector, and by now we are a group capable of controlling our entire chain of production, monitoring all manufacturing processes to guarantee superior quality standards and to provide concrete solutions for the rapidly evolving needs of customers and the market.

HYDRAULIC FILTRATION PRODUCTS

1 page INTRODUCTION 2 INDEX 4 COMPANY PROFILE 8 PRODUCT RANGE 11 CONTAMINATION MANAGEMENT 22 FILTER SIZING 24 CORRECTIVE FACTOR 28 FILTER SIZING SOFTWARE

up to Q_{max}

30 [age	SUCTION FILTERS	l/min	gpm
33	STR & MPA - MPM	Submerged suction filter, with bypass or magnetic filter	1000	264
40	SFEX	In-line filter with plastic bowl	100	26
51	SF2 250 - 350	Semi-submerged positive head suction filter, low flow rate	160	42
59	SF2 500	Semi-submerged positive head suction filter, high flow rate	700	185
709	CLOGGING INDICATORS			

			up to	P _{max}	up to	Q _{max}
(70) p	page	RETURN FILTERS	bar	psi	l/min	gpm
72	RFEX	Return filter, tank mounted filter suitable for all mineral oil and water glycol applications	16	232	260	69
82	MPFX	Tank top semi-immersed filter, standard filter element disassembly	8	116	900	238
110	MPLX	Tank top semi-immersed filter, standard filter element disassembly	10	145	1800	476
118	MPTX	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
136	MFBX	Bowl assembly	8	116	700	185
145	MPF	Tank top semi-immersed filter, standard filter element disassembly	8	116	900	238
173	MPT	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
191	MFB	Bowl assembly	8	116	700	185
199	MDH	Heavy industrial applications integrated in the tank - air separation	10	145	500	132
207	MPH	Tank top semi-immersed filter, standard filter element disassembly	10	145	3500	925
231	MPI	Tank top semi-immersed filter, standard filter element disassembly	10	145	3500	925
243	FRI	Tank top semi-immersed filter, easy filter element disassembly, it can be used also as in-line filter	20	290	2500	660
259	RF2	Semi-immersed under-head filter, easy filter element disassembly	20	290	615	162
266	ACCESSORIES					
710	CLOGGING INDICATORS					

			up to	P _{max}	up to	Q _{max}
268 F	page	RETURN / SUCTION FILTERS	bar	psi	l/min	gpm
270	MRSX	Unique TANK TOP filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	10	145	250	66
285	LMP 124 MULTIPORT	Unique IN-LINE filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	80	1160	120	32
712	CLOGGING INDICATORS				,	

			up 1	to P _{max}	up to	Q _{max}
292 p	age	SPIN-ON FILTERS	bar	psi	l/min	gpm
295	MPS	Low pressure filter, available with single cartridge (CS) for in-line or flange mounting or with two cartridge on the same axis on the opposite sides	12	174	365	96
311	MSH	In-line low and medium pressure filter available with single cartridge (CH)	35	508	195	52
714	CLOGGING INDICATORS					

			up to	P _{max}	up to	Q _{max}
(318) p	age	LOW & MEDIUM PRESSURE FILTERS	bar	psi	I/min	gpm
320	LFEX	In-line filter with plastic bowl	16	232	300	79
331	LMP 110	In-line low & medium pressure filter, low to medium flow rate	80	1160	165	44
339	LMP 112 - 123 MULTIPORT	In-line filter with Multiport design for multiple choice connection	80	1160	175	46
355	LMP 210 - 211	In-line low & medium pressure filter, low flow rate	60	870	365	96
365	LPH 630	Off-line low pressure filter	10	145	1600	352
373	LMP 400 - 401 & 430 - 431	In-line low & medium pressure filter, high flow rate	60	870	780	206
385	LMP 950 - 951	In-line filter, available with 2 and up to 6 different heads	30	435	2400	634
393	LMP 952 - 953 - 954	In-line low pressure filter specifically designed to be mounted in series	25	363	4500	1189
405	LMD 211	In-line duplex medium pressure filter	60	870	200	53
413	LMD 400 - 401 & 431	In-line duplex low pressure filter	16	232	600	159
429	LMD 951	In-line duplex filter, available with 2 up to 6 different heads	16	232	1200	317
437		Filter elements designed according to DIN 24550				
439	LDP - LDD	In-line and duplex medium pressure filter	60	870	360	95
449	LMP 900 - 901	In-line low pressure filter	30	435	2000	528
457	LMP 902 - 903	In-line filter specifically designed to be mounted in series	20	290	3000	793
466	ACCESSORIES					
716	CLOGGING INDICATORS					

			up to	Pmax	up to	Q _{max}
468 p	age	HIGH PRESSURE FILTERS	bar	psi	l/min	gpm
470	FMMX 050	Typical high pressure filter for mobile applications, low flow rate	420	6092	154	41
479	FMM	Typical high pressure filter for mobile applications, low flow rate	420	6092	300	79
489	FHA 051	Filter optimized for use in high pressure operating systems, low flow rate	560	8122	150	40
497	FMP 039	Filter high pressure, low flow rate applications	110	1595	80	21
505	FMP	Filter high pressure, high flow rate applications	320	4641	500	132
517	FHP	Typical high pressure filter for mobile applications, high flow rate	450	6527	630	166
537	FHM	High pressure filter with intermediate manifold construction	320	4641	400	106
555	FHB	High pressure for block mounting	320	4641	485	128
569	FHF 325	In-line manifold top mounting	350	5076	550	145
579	FHD	In-line duplex high pressure filter	350	5076	250	66
593	HPB	Pressure filter kits for integration in control manifolds	420	6092	300	79
717	CLOGGING INDICATORS					

			up	to P _{max}	up to	Q _{max}
602	age	STAINLESS STEEL HIGH PRESSURE FILTERS	bar	psi	I/min	gpm
605	FZP	In-line pressure filter with threaded mount	420	6092	160	42
615	FZH	In-line pressure filter with threaded mount for higher pressure	700	10153	80	21
625	FZX	In-line pressure filter with threaded mount up to 1000 bar	1000	14504	10	3
633	FZM	Manifold top mounting	320	4641	70	18
641	FZB	Manifold side mounting	320	4641	70	18
649	FZD	Duplex pressure filter for continuous operation requirements	350	5076	60	16
718	CLOGGING INDICATORS					

			up to	P_{max}	up to	Q _{max}
660 F	page	FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE	bar	psi	l/min	gpm
663	FMMX 050	Typical high pressure filter for mobile applications, low flow rate	420	6092	154	41
671	FZP	In-line pressure filter with threaded mount	700	10153	80	21
681	FZH	In-line pressure filter with threaded mount for higher pressure	1000	14504	10	3
691	FZX	In-line pressure filter with threaded mount up to 1000 bar	320	4641	70	18
719	CLOGGING INDICATORS					

699 page	CLOGGING INDICATORS
lissi bade	しんしんれいいい ロッカル・カー

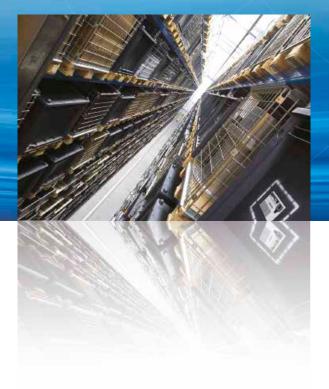
- 704 QUICK REFERENCE GUIDE
- 708 DESIGNATION AND ORDERING CODES
- 720 TECHNICAL DATA

WORLDWIDE PRESENCE

Our foreign Branches enable us to offer a diversified range of products that allow us to successfully face the aggressive challenge of international competition, and also to maintain a stable presence at a local level.

The Group boasts **9** business branches

TECHNOLOGY


Our constant quest for excellence in quality and technological innovation allows us to offer only the best solutions and services for applications in many fields, including general industry, test rigs, lubrication, heavy engineering, renewable energies, naval engineering, offshore engineering, aviation systems, emerging technologies and mobile plant (i.e. tractors, excavators, concrete pumps, platforms).

AND PRODUCTION

Our high level of technological expertise means we can rely entirely on our own resources, without resorting to external providers. This in turn enables us to satisfy a growing number of customer requests, also exploiting our constantly updated range of machines and equipment, featuring fully-automated workstations capable of 24-hour production.

SUCTION **FILTERS**

Flow rates up to 875 l/min

Mounting:

- Tank immersed
- In-Line
- In tank with shut off valve
- In tank with flooded suction

RETURN FILTERS

Flow rates up to 3000 l/min

Pressure

up to 20 bar

- Mounting:
- In-Line
- Tank top
- In single and duplex designs

RETURN / SUCTION **FILTERS**

Flow rates up to 300 l/min

Mounting:

- In-Line

Pressure up to 80 bar

- Tank top

SPIN-ON **FILTERS**

Flow rates up to 365 l/min

Pressure up to 35 bar

Mounting:

- In-Line
- Tank top

LOW & MEDIUM PRESSURE **FILTERS**

Flow rates up to 3000 I/min

Pressure up to 80 bar

Mounting:

- In-Line
- Parallel manifold version
- In single and duplex designs

HIGH **PRESSURE FILTERS**

Flow rates up to 750 l/min

Pressure from 110 bar up to 560 bar

Mounting:

- In-Line
- Manifold
- In single
- and duplex designs

PRODUCT RANGE

MP Filtri can offer a vast and articulated range of products for the global market, suitable for all industrial sectors using hydraulic equipment.

This includes filters (suction, return, return/suction, spin-on, pressure, stainless steel pressure, ATEX filters) and structural components (motor/pump bell-housings, transmission couplings, damping rings, foot brackets, aluminium tanks, cleaning covers).

We can provide all the skills and solutions required by the modern hydraulics industry to monitor contamination levels and other fluid conditions.

Mobile filtration units and a full range of accessories allow us to supply everything necessary for a complete service in the hydraulic circuits.

STAINLESS STEEL HIGH PRESSURE FILTERS

Flow rates up to 150 l/min

Pressure from 320 bar up to 1000 bar

Mounting:

- In-Line
- Manifold
- In single and duplex designs

FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE

Flow rates up to 154 l/min

Pressure from 420 bar up to 1000 bar

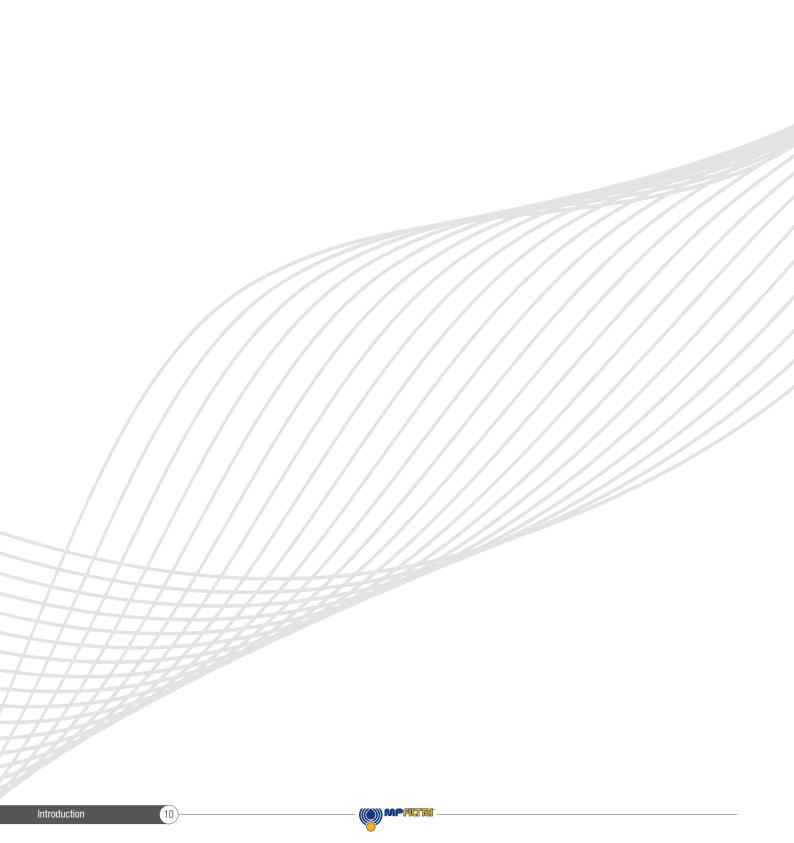
Mounting:

- In-Line

CONTAMINATION CONTROL SOLUTIONS

- Off-line, in-line particle counters
- Off-line bottle sampling products
- Fully calibrated using relevant ISO standards
- A wide range of variants to support fluid types and communication protocols
- Mobile Flltration Units with flow rates from 15 I/min up to 200 I/min

POWER TRANSMISSION PRODUCTS


- Aluminium bell-housings for motors from 0.12 kW to 400 kW
- Couplings in Aluminium

 Cast Iron Steel
- Damping rings
- Foot bracket
- Aluminium tanks
- Cleaning covers

TANK ACCESSORIES

- Oil filler and air breather plugs
- Optical and electrical level gauges
- Pressure gauge valve selectors
- Pipe fixing brackets
- Pressure gauges

CONTAMINATION MANAGEMENT

INDEX

		Pag
1	HYDRAULIC FLUIDS	12
2	FLUIDS CONTAMINATION	12
3	FLUIDS COMPATIBILITY CHART	12
4	EFFECTS OF CONTAMINATION ON HYDRAULIC COMPONENTS	13
5	MEASURING THE SOLID CONTAMINATION LEVEL	13
6	FILTRATION TECHNOLOGIES	16
7	RECOMMENDED CONTAMINATION CLASSES	17
8	TYPES OF FILTERS	17
9	FILTER SIZING PARAMETERS	18
10	APPLICABLE STANDARDS FOR FILTER DEVELOPMENT	18
11)	WATER IN HYDRAULIC AND LUBRICATING FLUIDS	19
12)	THE ANTI-STATIC FILTERS Zerospark+	20

1 HYDRAULIC FLUIDS

The fluid is the vector that transmits power, energy within an oleodynamic circuit. In addition to transmitting energy through the circuit, it also performs additional functions such as lubrication, protection and cooling of the surfaces.

The classification of fluids used in hydraulic systems is coded in many regulatory references, different Standards.

The most popular classification criterion divides them into the following families:

 MINERAL OILS Commonly used oil derived fluids.

- FIRE RESISTANT FLUIDS

Fluids with intrinsic characteristics of incombustibility or high flash point.

- SYNTHETIC FLUIDS

Modified chemical products to obtain specific optimized features.

- ECOLOGICAL FLUIDS

Synthetic or vegetable origin fluids with high biodegradability characteristics.

The choice of fluid for an hydraulic system must take into account several parameters.

These parameters can adversely affect the performance of an hydraulic system, causing delay in the controls, pump cavitation, excessive absorption, excessive temperature rise, efficiency reduction, increased drainage, wear, jam/block or air intake in the plant.

The main properties that characterize hydraulic fluids and affect their choice are:

- DYNAMIC VISCOSITY

It identifies the fluid's resistance to sliding due to the impact of the particles forming it.

- KINEMATIC VISCOSITY

It is a widespread formal dimension in the hydraulic field.

It is calculated with the ratio between the dynamic viscosity and the fluid density

Kinematic viscosity varies with temperature and pressure variations.

- VISCOSITY INDEX

This value expresses the ability of a fluid to maintain viscosity when the temperature changes.

A high viscosity index indicates the fluid's ability to limit viscosity variations by varying the temperature.

- FILTERABILITY INDEX

It is the value that indicates the ability of a fluid to cross the filter materials. A low filterability index could cause premature clogging of the filter material.

- WORKING TEMPERATURE

Working temperature affects the fundamental characteristics of the fluid. As already seen, some fluid characteristics, such as cinematic viscosity, vary with the temperature variation.

When choosing a hydraulic oil, must therefore be taken into account of the environmental conditions in which the machine will operate.

- COMPRESSIBILITY MODULE

Every fluid subjected to a pressure contracts, increasing its density. The compressibility module identifies the increase in pressure required to cause a corresponding increase in density.

- HYDROLYTIC STABILITY

It is the characteristic that prevents galvanic pairs that can cause wear in the plant/system.

- ANTIOXIDANT STABILITY AND WEAR PROTECTION

These features translate into the capacity of a hydraulic oil to avoid corrosion of metal elements inside the system.

- HEAT TRANSFER CAPACITY

It is the characteristic that indicates the capacity of hydraulic oil to exchange heat with the surfaces and then cool them.

(2) FLUID CONTAMINATION

Whatever the nature and properties of fluids, they are inevitably subject to contamination. Fluid contamination can have two origins:

- INITIAL CONTAMINATION

Caused by the introduction of contaminated fluid into the circuit, or by incorrect storage, transport or transfer operations.

- PROGRESSIVE CONTAMINATION

Caused by factors related to the operation of the system, such as metal surface wear, sealing wear, oxidation or degradation of the fluid, the introduction of contaminants during maintenance, corrosion due to chemical or electrochemical action between fluid and components, cavitation. The contamination of hydraulic systems can be of different nature:

- SOLID CONTAMINATION

For example rust, slag, metal particles, fibers, rubber particles, paint particles or additives

- LIQUID CONTAMINATION

For example, the presence of water due to condensation or external infiltration or acids

- GASEOUS CONTAMINATION

For example, the presence of air due to inadequate oil level in the tank, drainage in suction ducts, incorrect sizing of tubes or tanks.

(3) FLUID COMPATIBILITY CHARTS

For general fluid compatibility with Contamination Monitoring Products the below rules can be used:

- For mineral oils, synthetic fluids and diesel the 'M' type variant of unit is recommended.
- For water based/ subsea fluids & 'M' type fluids the 'N' type variant of unit is recommended.
- For Aerospace phosphate esters, Skydrols ® and aggressive fluids along with 'M' & 'N' type fluids - the 'S' type variant is recommended.

All fluids are required to be clear in appearance to allow light to penetrate unhindered.

For further and more detailed information on specific fluid compatibility please refer to the fluid compatibility list

(4) EFFECTS OF CONTAMINATION ON HYDRAULIC COMPONENTS

Solid contamination is recognized as the main cause of malfunction, failure and early degradation in hydraulic systems. It is impossible to delete it completely. but it can be effectively controlled by appropriate devices.

CONTAMINATION IN PRESENCE OF LARGE TOLERANCES

CONTAMINATION IN PRESENCE OF NARROW TOLERANCES

Solid contamination mainly causes surface damage and component wear.

- ABRASION OF SURFACES Cause of leakage through mechanical seals, reduction of system performance, failures.
- SURFACE EROSION Cause of leakage through mechanical seals, reduction of system performance, variation in adjustment of control components, failures.
- ADHESION OF MOVING PARTS Cause of failure due to lack of lubrication.
- DAMAGES DUE TO FATIGUE Cause of breakdowns and components breakdown.

ABRASION

ADHESION

FROSION

FATIGUE

Liquid contamination mainly results in decay of lubrication performance and protection of fluid surfaces.

DISSOLVED WATER

- INCREASING FLUID ACIDITY Cause of surface corrosion and premature fluid oxidation
- GALVANIC COUPLE AT HIGH TEMPERATURES Cause of corrosion

FREE WATER - ADDITIONAL EFFECTS

- DECAY OF LUBRICANT PERFORMANCE Cause of rust and sludge formation, metal corrosion and increased solid contamination
- BATTERY COLONY CREATION Cause of worsening in the filterability feature

- ICE CREATION AT LOW TEMPERATURES Cause damage to the surface
- ADDITIVE DEPLETION Free water retains polar additives

Gaseous contamination mainly results in decay of system performance.

CUSHION SUSPENSION Cause of increased noise and cavitation.

MODIFICATION OF FLUID PROPERTIES

- FLUID OXIDATION Cause of corrosion acceleration of metal parts.
- (COMPRESSIBILITY MODULE, DENSITY, VISCOSITY) Cause of system's reduction of efficiency and of control. It is easy to understand how a system without proper contamination management is subject to higher costs than a system that is provided.
- MAINTENANCE Increase maintenance activities, spare parts, machine stop costs.
- **ENERGY AND EFFICIENCY** Efficiency and performance reduction due to friction, drainage, cavitation.

MEASURING THE SOLID CONTAMINATION LEVEL

The level of contamination of a system identifies the amount of contaminant contained in a fluid. This parameter refers to a unit volume of fluid.

The level of contamination may be different at different points in the system. From the information in the previous paragraphs it is also apparent that the level of contamination is heavily influenced by the working conditions of the system, by its working years and by the environmental conditions.

What is the size of the contaminating particles that we must handle in our hydraulic circuit?

HUMAN HAIR (75 µm)

MINIMUM DIMENSION VISIBLE WITH HUMAN (40 µm)

DIMENSION IN A HYDRAULIC CIRCUIT (4 - 14 µm)

Contamination level analysis is significant only if performed with a uniform and repeatable method, conducted with standard test methods and suitably calibrated equipment. To this end, ISO has issued a set of standards that allow tests to be conducted and express the measured values in the following ways.

- GRAVIMETRIC LEVEL - ISO 4405

The level of contamination is defined by checking the weight of particles collected by a laboratory membrane. The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard.

The volume of fluid is filtered through the membrane by using a suitable suction system. The weight of the contaminant is determined by checking the weight of the membrane before and after the fluid filtration.

CLEAN MEMBRANE

CONTAMINATED MEMBRANE

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4406

The level of contamination is defined by counting the number of particles of certain dimensions per unit of volume of fluid. Measurement is performed by Contamination Monitoring Products (CMP).

Following the count, the contamination classes are determined, corresponding to the number of particles detected in the unit of fluid.

The most common classification methods follow ISO 4406 and SAE AS 4059 (Aerospace Sector) regulations.

NAS 1638 is still used although obsolete.

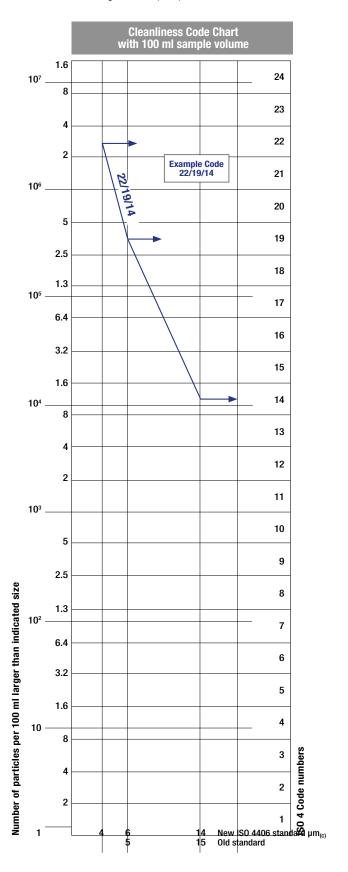
Classification example according to ISO 4406

The International Standards Organization standard ISO 4406 is the preferred method of quoting the number of solid contaminant particles in a sample. The level of contamination is defined by counting the number of particles of certain dimensions per unit of volume of fluid. The measurement is performed by Contamination Monitoring Products (CMP).

The numbers represent a code which identifies the number of particles of certain sizes in 1ml of fluid. Each code number has a particular size range. The first scale number represents the number of particles equal to or larger than 4 μ m_(c) per millilitre of fluid;

The second scale number represents the number of particles equal to or larger than 6 μ m_(c) per millilitre of fluid;

The third scale number represents the number of particles equal to or larger than 14 μ m(c) per millilitre of fluid.


ISO 4406 - Allocation of Scale Numbers

Class	Number of particles per ml				
	Over	Up to			
28	1 300 000	2 500 000			
27	640 000	1 300 000			
26	320 000	640 000			
25	160 000	320 000			
24	80 000	160 000			
23	40 000	80 000			
22	20 000	40 000			
21	10 000	20 000			
20	5 000	10 000			
19	2 500	5 000			
18	1 300	2 500			
17	640	1 300			
16	320	640			
15	160	320			
14	80	160			
13	40	80			
12	20	40			
11	10	20			
10	5	10			
9	2.5	5			
8	1.3	2.5			
7	0.64	1.3			
6	0.32	0.64			
5	0.16	0.32			
4	0.08	0.16			
3	0.04	0.08			
2	0.02	0.04			
1	0.01	0.02			
0	0	0.01			

> $4 \mu m_{(c)} = 350 \text{ particles}$ > $6 \mu m_{(c)} = 100 \text{ particles}$ > $14 \mu m_{(c)} = 25 \text{ particles}$ 16/14/12

ISO 4406 Cleanliness Code System

Microscope counting examines the particles differently to Contamination Monitoring Products (CMP) and the code is given with two scale numbers only. These are at 5 μ m and 15 μ m equivalent to the 6 μ m_(c) and 14 μ m_(c) of Contamination Monitoring Products (CMP).

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE SAE AS4059-1 and SAE AS4059-2

Classification example according to SAE AS4059 - Rev. G

The code, prepared for the aerospace industry, is based on the size, quantity, and particle spacing in a 100 ml fluid sample. The contamination classes are defined by numeric codes, the size of the contaminant is identified by letters (A-F).

This SAE Aerospace Standard (AS) defines cleanliness levels for particulate contamination of hydraulic fluids and includes methods of reporting data relating to the contamination levels. Tables 1 and 2 below provide differential and cumulative particle counts respectively for counts obtained by an automatic particle counter, e.g. LPA3.

Table 1 - Class for differential measurement

						-					
Class	Dimension of contaminant Maximum Contamination Limits per 100 ml										
	5-15 μm	>100 µm	(1)								
	6-14 μm _(c)	14-21 μm _(c)	21-38 μm _(c)	38-70 μm _(c)	>70 µm _(c)	(2)					
00	125	22	4	1	0						
0	250	44	8	2	0	_					
1	500	89	16	3	1	_					
2	1 000	178	32	6	1	_					
3	2 000	356	63	11	2	_					
4	4 000	712	126	22	4						
5	8 000	1 425	253	45	8	_					
6	16 000	2 850	506	90	16						
7	32 000	5 700	1 012	180	32						
8	64 000	11 400	2 025	360	64						
9	128 000	22 800	4 050	720	128	_					
10	256 000	45 600	8 100	1 440	256	_					
11	512 000	91 200	16 200	2 880	512	_					
12	1 024 000	182 400	32 400	5 760	1 024						

6 - 14 μ m_(c) = 15 000 particles 14 - 21 μ m_(c) = 2 200 particles $21 - 38 \mu m_{(c)} =$ 200 particles $38 - 70 \, \mu m_{(c)} =$ SAE AS4059 REV G - Class 6

(1) Size range, optical microscope, based on longest dimension as measured per AS598 or ISO 4407. (2) Size range CMP calibrated per ISO 11171 or an optical or electron microscope with image analysis software, based on projected area equivalent diameter. (3) Contamination classes and particle count limits are identical to NAS 1638.

Table 2 - Class for cumulative measurement

Class		Dimension of contaminant Maximum Contamination Limits per 100 ml											
	>1 µm	>5 µm	>15 µm	>25 µm	>50 µm	>100 µm	(1)						
	>4 µm _(c)	>6 µm _(c)	>14 µm _(c)	>21 µm _(c)	>38 µm _(c)	>70 µm _(c)	(2)						
000	195	76	14	3	1	0							
00	390	152	27	5	1	0							
0	780	304	54	10	2	0							
1	1 560	609	109	20	4	1							
2	3 120	1 217	217	39	7	1							
3	6 250	2 432	432	76	13	2							
4	12 500	4 864	864	152	26	4							
5	25 000	9 731	1 731	306	53	8							
6	50 000	19 462	3 462	612	106	16							
7	100 000	38 924	6 924	1 224	212	32							
	200 000	77 849	13 849	2 449	424	64							
9	400 000	155 698	27 698	4 898	848	128							
10	800 000	311 396	55 396	9 796	1 696	256							
11	1 600 000	622 792	110 792	19 592	3 392	512							
12	3 200 000	1 245 584	221 584	39 184	6 784	1 024							

 $> 4 \mu m_{(c)} = 45 000 \text{ particles}$ $> 6 \mu m_{(c)} = 15 000 \text{ particles}$

 $> 14 \mu m_{(c)} = 1500 \text{ particles}$ $> 21 \, \mu m_{(c)} =$ 250 particles

SAE AS4059 REV G cpc* Class 6 6/6/5/5/4/2 cumulative particle count

(1) Size range, optical microscope, based on longest dimension as measured per AS598 or ISO 4407. (2) Size range, CMP calibrated per ISO 11171 or an optical or electron microscope with image analysis software, based on projected area equivalent diameter. (3) Contamination classes and particle count limits are identical to NAS 1638.

- CLASSES OF CONTAMINATION ACCORDING TO NAS 1638 (January 1964)

The NAS system was originally developed in 1964 to define contamination classes for the contamination contained within aircraft components.

The application of this standard was extended to industrial hydraulic systems simply because nothing else existed at the time.

The coding system defines the maximum numbers permitted of 100 ml volume at various size intervals (differential counts) rather than using cumulative counts as in ISO 4406. Although there is no guidance given in the standard on how to quote the levels, most industrial users quote a single code which is the highest recorded in all sizes and this convention is used on MP Filtri Contamination Monitoring Products (CMP).

The contamination classes are defined by a number (from 00 to 12) which indicates the maximum number of particles per 100 ml, counted on a differential basis, in a given size bracket. Size Range Classes (in microns)

	Maximum Contamination Limits per 100 ml												
Class	5-15	50-100	>100										
00	125	22	4	1	0								
0	250	44	8	2	0								
1	500	89	16	3	1								
2	1 000	178	32	6	1								
3	2 000	356	63	11	2								
4	4 000	712	126	22	4								
5	8 000	1 425	253	45	8								
6	16 000	2 850	506	90	16								
7	32 000	5 700	1 012	180	32								
8	64 000	11 400	2 025	360	64								
9	128 000	22 800	4 050	720	128								
10	256 000	45 600	8 100	1 440	256								
11	512 000	91 200	16 200	2 880	512								
12	1 024 000	182 400	32 400	5 760	1 024								

 $5-15 \, \mu m = 42 \, 000 \, particles$ $15-25 \, \mu m = 2 \, 200 \, particles$ 25-50 μm = 150 particles $50-100 \, \mu m =$ 18 particles Class NAS 8

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4407

The level of contamination is defined by counting the number of particles collected by a laboratory membrane per unit of fluid volume. The measurement is done by a microscope. The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard. The fluid volume is filtered through the membrane, using a suitable suction system.

The level of contamination is identified by dividing the membrane into a predefined number of areas and by counting the contaminant particles using a suitable laboratory microscope.

MICROSCOPE CONTROL AND MEASUREMENT

Example figure 1 and 2

COMPARISON PHOTOGRAPH'S 1 graduation = 10um

Fig. 2

For other comparison photographs for contamination classes see the 'Fluid Condition and Filtration Handbook".

- CLEANLINESS CODE COMPARISON

Although ISO 4406 standard is being used extensively within the hydraulics industry other standards are occasionally required and a comparison may be requested. The table below gives a very general comparison but often no direct comparison is possible due to the different classes and sizes involved.

ISO 4406	0 4406 SAE AS4059 SAE AS4059 Table 2 Table 1			
> 4 μm _(c) 6 μm _(c) 14 μm _(c)	> 4 μm _(c) 6 μm _(c) 14 μm _(c)	4-6 6-14 14-21 21-38 38-70 >70	5-15 15-25 25-50 50-100 >100	
23 / 21 / 18	13A / 12B / 12C	12	12	
22 / 20 / 17	12A / 11B / 11C	11	11	
21 / 19 / 16	11A / 10B / 10C	10	10	
20 / 18 / 15	10A / 9B / 9B	9	9	
19 / 17 / 14	9A / 8B / 8C	8	8	
18 / 16 / 13	8A / 7B / 7C	7	7	
17 / 15 / 12	7A / 6B / 6C	6	6	
16 / 14 / 11	6A / 5B / 5C	5	5	
15 / 13 / 10	5A / 4B / 4C	4	4	
14 / 12 / 09	4A / 3B / 3C	3	3	

TRATION Polyester Microfibre RE-FILTRATION LAYER

Microfibre filtration technology

Microfibre

The filtration efficiency of metallic mesh filtrations is defined as the maximum particle size that can pass through the meshes of the filtering grid.

The efficiency of microfibre and paper filtration $(\beta_{x(c)})$ is defined through a lab test called Multipass Test. The efficiency value $(\beta_{\chi(c)})$ is defined as the ratio between the number of particles of certain dimensions detected upstream and downstream of the filter.

Upstream particles number $> X \mu m_{(c)}$ Downstream particles number $> X \mu m_{(c)}$

Value $(B_{x(c)})$	2	10	75	100	200	1000
Efficiency	50%	90%	98.7%	99%	99.5%	99.9%

Test conditions, such as type of fluid to be used (MIL-H-5606), type of contaminant to be used (ISO MTD), fluid viscosity, test temperature, are determined by ISO

In addition to the filtration efficiency value during the Multipass test, other important features, such as filtration stability (β stability) and dirt holding capacity (DHC), are also tested.

Poor filtration stability is the cause of the filtering quality worsening as the filter life rises. Low dirt holding capacity causes a reduction in the life of the filter.

(6) FILTRATION TECHNOLOGIES

Various mechanisms such as mechanical stoppage, magnetism, gravimetric deposit, or centrifugal separation can be used to reduce the level of contamination.

The mechanical stoppage method is most effective and can take place in two ways:

- SURFACE FILTRATION

It is by direct interception. The filter prevents particles larger than the pores from continuing in the plant / system. Surface filters are generally manufactured with metal canvases or meshes.


- DEPTH FILTERING

Filters are constructed by fiber interlacing. Such wraps form pathways of different shapes and sizes in which the particles remain trapped when they find smaller apertures than their diameter.

Depth filters are generally produced with papers impregnated with phenolic resins, metal fibers or inorganic fibers.

In inorganic fiber filtration, commonly called microfibre, the filtering layers are often overlapped in order to increase the ability to retain the contaminant.

PAPER FILTRATION

16

MICROFIRER FILTRATION

Filtration ISO Standard Comparison										
$\beta_{\rm X(C)} > 1000$	$\beta_{\rm X} > 200$	MP Filtri								
ISÓ 16889	ISO 4572	Filter media code								
5 μm _(c)	3 μm	A03								
7 μm _(c)	6 μm	A06								
10 μm _(C)	10 μm	A10								
16 μm _(C)	18 µm	A16								
21 μm _(c)	25 μm	A25								

(7) RECOMMENDED CONTAMINATION CLASSES

Any are the nature and the properties of fluids, they are inevitably subject to contamination. The level of contamination can be managed by using special components called filters.

Hydraulic components builders, knowing the problem of contamination, recommend the filtration level appropriate to the use of their products.

Example of recommended contamination levels for pressures below 140 bar.

Dioton numno						
Piston pumps	•					
with fixed flow rate						
Piston pumps			•			
with variable flow rate			_			
Vane pumps						
with fixed flow rate		•				
Vane pumps						
with variable flow						
Engines	•					
Hydraulic cylinders	•					
Actuators					•	
Test benches						•
Check valve	•					
Directional valves	•					
Flow regulating valves	•					
Proportional valves				•		
Servo-valves					•	
Flat bearings			•			
Ball bearings				•		
ISO 4406 CODE	20/18/15	19/17/14	18/16/13	17/15/12	16/14/11	15/13/10
Recommended	B _{21(c)}	B _{15(c)}	B _{10(c)}	B7(c)	B7(c)	B _{5(c)}
filtration $\beta x(c) \ge 1.000$	>1000	>1000	>1000	>1000	>1000	>1000
MP Filtri media code	A25	A16	A10	A06	A06	A03

The common classification of filters is determined by their position in the plant.

8 TYPES OF FILTERS

Suction filters

They are positioned before the pump and are responsible for protecting the pump from dirty contaminants. It also provides additional flow guidance to the pump suction line

Being subject to negligible working pressures are manufactured with simple and lightweight construction.

They are mainly produced with gross grade surface filtrations, mainly $60 \div 125 \,\mu m$. They can be equipped with a magnetic filter for retaining ferrous particles.

They are generally placed under the fluid head to take advantage of the piezometric thrust of the fluid and reduce the risk of cavitation.

There are two types of suction filters:

- IMMERSION FILTERS
 Simple filter element screwed on the suction pipe
- FILTERS WITH CONTAINER
 Container filters that are more bulky, but provide easier maintenance of the tank

Delivery (or Pressure) filters

They are positioned between the pump and most sensitive regulating and controlling components, such as servo valves or proportional valves, and are designed to ensure the class of contamination required by the components used in the circuit.

Being subjected to high working pressures are manufactured with more robust and articulated construction. In particular situations of corrosive environments or aggressive fluids can be made of stainless steel.

They are mainly produced with filtering depths of $3 \div 25 \,\mu\text{m}$.

They can be manufactured with in-line connections, with plate or flange connections or directly integrated into the circuit control blocks / manifolds. They can also be manufactured in duplex configuration to allow the contaminated section to be maintained even when the plant / system is in operation without interruption of the working cycle.

Return filters

They are positioned on the return line to the tank and perform the task of filtering the fluid from particles entering the system from the outside or generated by the wear of the components.

They are generally fixed to the reservoir (for this reason also called top tank mounted), positioned semi-immersed or completely immersed.

The positioning of the return filters must guarantee in all operating conditions that the fluid drainage takes place in immersed condition; this is to avoid creating foams in the tank that can cause malfunctions or cavitation in the pumps.

For the sizing of the return filters, account must be taken of the presence of accumulators or cylinders that can make the return flow considerably greater than the pump suction flow rate.

Being subject to contained working pressures are manufactured with simple and lightweight construction.

Normally it is possible to extract the filter element without disconnecting the filter from the rest of the system.

Combined filters

They are designed to be applied to systems with two or more circuits. They are commonly used in hydrostatic transmission machines where they have a dual filtration function of the return line and suction line of the hydrostatic transmission pump.

The filter is equipped with a valve that keeps the 0.5 bar pressure inside the filter. A portion of the fluid that returns to the tank is filtered by the return filter element, generally produced with absolute filtration, and returns to the transmission booster pump.

Only excess fluid returns to the tank through the valve.

The internal pressure of the filter and the absolute filtration help to avoid the cavitation phenomenon inside the pump.

Off-line filters

They are generally used in very large systems / plants, placed in a closed circuit independent from the main circuit. They remain in operation regardless of the operation of the main circuit and are crossed by a constant flow rate.

They can also be manufactured in duplex configuration to allow the contaminated section to be maintained even when the unit is in operation without interruption of the work cycle.

Venting filters

During the operation of the plants, the fluid level present in the reservoir changes continuously.

The result of this continuous fluctuation is an exchange of air with the outside environment.

The venting filter function, positioned on the tank, is to filter the air that enters the tank to compensate for fluid level variations.

9 FILTER SIZING PARAMETERS

The choice of the filter system for an hydraulic system is influenced by several factors.

It is necessary to consider the characteristics of the various components present in the plant and their sensitivity to contamination.

It is also necessary to consider all the tasks that the filter will have to do within the plant:

- FLUID PROTECTION FROM CONTAMINATION
- PROTECTION OF OLEODYNAMIC COMPONENTS SENSITIVE TO CONTAMINATION
- PROTECTION OF OLEODYNAMIC PLANTS FROM ENVIRONMENTAL WASTE
- PROTECTION OF OLEODYNAMIC PLANTS FROM CONTAMINATION CAUSED BY COMPONENTS' FAILURES

The advantages of proper positioning and sizing of the filters are

- MORE RELIABILITY OF THE SYSTEM
- LONGER LIFE OF THE FLUID COMPONENTS
- REDUCTION OF STOP TIME
- REDUCTION OF FAILURE CASUALITIES

Each hydraulic filter is described by general features that identify the possibility of use in different applications.

• MAXIMUM WORKING PRESSURE (Pmax)

The maximum working pressure of the filter must be greater than or equal to the pressure of the circuit section in which it will be installed.

PRESSURE DROP (ΔP)

The pressure drop depends on a number of factors, such as the working circuit temperature, the fluid viscosity, the filter element cleaning condition.

WORKING TEMPERATURE (T)

The working temperature deeply affect the choice of materials. Excessively high or low temperatures may adversely affect the strength of the materials or the characteristics of the seals.

• FILTRATION EFFICIENCY (%) / FILTRATION RATIO (β_{x(c)})

18

Filtration efficiency is the most important parameter to consider when selecting a filter.

When choosing the filtration performances, the needs of the most sensitive components in the system must be considered.

FLUID TYPE

The type of fluid influences the choice of filters in terms of compatibility and viscosity. It is always mandatory to check the filterability.

PLACEMENT IN THE PLANT

The position of the filter in the system conditions the efficiency of all filter performances.

(10) APPLICABLE STANDARDS FOR FILTER DEVELOPMENT

In order to obtain unique criteria for development and verification of the filters performance, specific regulations for the filters and filter elements testing have been issued by ISO. These norms describe the target, the methodology, the conditions and the presentation methods for the test results.

ISO 2941

Hydraulic fluid power -- Filter elements -- Verification of collapse/burst pressure rating

This Standard describes the method for testing the collapse / burst resistance of the filter elements.

The test is performed by crossing the contaminated fluid filter element at a predefined flow rate. The progressive clogging of the filter element, determined by contamination, causes an increase in differential pressure.

ISO 2942

Hydraulic fluid power -- Filter elements -- Verification of fabrication integrity and determination of the first bubble point

This Standard describes the method to verify the integrity of the assembled filter elements.

It can be used to verify the quality of the production process or the quality of the materials by verifying the pressure value of the first bubble point.

ISO 2943

Hydraulic fluid power -- Filter elements -- Verification of material compatibility with fluids

This Standard describes the method to verify the compatibility of materials with certain hydraulic fluids.

The test is carried out by keeping the element (the material sample) immersed in the fluid under high or low temperature conditions for a given period of time and verifying the retention of the characteristics.

ISO 3723

Hydraulic fluid power -- Filter elements -- Method for end load test

This Standard describes the method for verifying the axial load resistance of the filter elements.

After performing the procedure described in ISO 2943, the designed axial load is applied to the filter element. To verify the test results, then the test described in ISO 2941 is performed.

ISO 3968

Hydraulic fluid power -- Filters -- Evaluation of differential pressure versus flow characteristics

This Standard describes the method for checking the pressure drop across the filter

The test is carried out by crossing the filter from a given fluid and by detecting upstream and downstream pressures.

Some of the parameters defined by the Standard are the fluid, the test temperature, the size of the tubes, the position of the pressure detection points.

ISO 16889

Hydraulic fluid power -- Filters -- Multi-pass method for evaluating filtration performance of a filter element

This Standard describes the method to check the filtration characteristics of the filter elements.

The test is performed by constant introduction of contaminant (ISO MTD). The characteristics observed during the test are the filtration efficiency and the dirty holding capacity related to the differential pressure.

ISO 23181

Hydraulic fluid power -- Filter elements -- Determination of resistance to flow fatigue using high viscosity fluid

This Standard describes the method for testing the fatigue resistance of the filter elements. The test is carried out by subjecting the filter to continuous flow variations, thus differential pressure, using a high viscosity fluid.

ISO 11170

Hydraulic fluid power -- Sequence of tests for verifying performance characteristics of filter elements

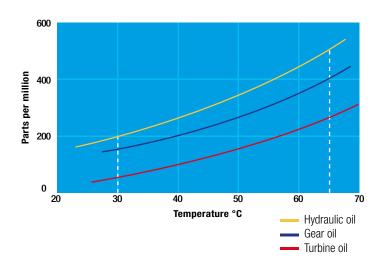
The Standard describes the method for testing the performance of filter elements. The protocol described by the regulations provides the sequence of all the tests described above in order to verify all the working characteristics (mechanical, hydraulic and filtration).

ISO 10771-1

Hydraulic fluid power -- Fatigue pressure testing of metal pressure-containing envelopes -- Test method

This Standard describes the method to check the resistance of the hydraulic components with pulsing pressure.

It can be applied to all metal components (excluding tubes) subject to cyclic pressure used in the hydraulic field.

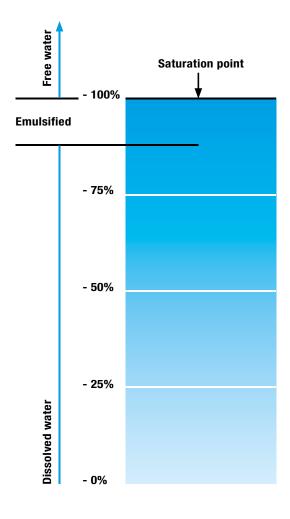

(11) WATER IN HYDRAULIC AND LUBRICATING FLUIDS

Water Content

In mineral oils and non aqueous resistant fluids water is undesirable. Mineral oil usually has a water content of 50-300 ppm (@40°C) which it can support without adverse consequences.

Once the water content exceeds about 300ppm the oil starts to appear hazy. Above this level there is a danger of free water accumulating in the system in areas of low flow. This can lead to corrosion and accelerated wear.

Similarly, fire resistant fluids have a natural water which may be different to mineral oil.


Saturation Levels

Since the effects of free (also emulsified) water is more harmful than those of dissolved water, water levels should remain well below the saturation point.

However, even water in solution can cause damage and therefore every reasonable effort should be made to keep saturation levels as low as possible. There is no such thing as too little water. As a guideline, we recommend maintaining saturation levels below 50% in all equipment.

TYPICAL WATER SATURATION LEVEL FOR NEW OILS Examples:

Hydraulic oil @ 30° C = 200 ppm = 100% saturation Hydraulic oil @ 65° C = 500 ppm = 100% saturation

WATER REMOVAL

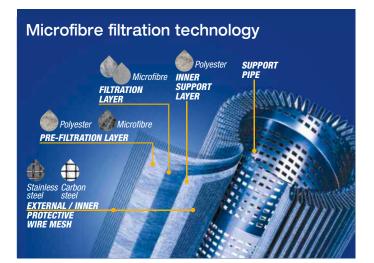
Water is present everywhere, during storage, handling and servicing.

MP Filtri filter elements feature an absorbent media which protects hydraulic systems from both particulate and water contamination.

MP Filtri's filter element technology is available with inorganic microfiber media with a filtration rating 25 µm (therefore identified with media designation WA025), providing absolute filtration of solid particles to $B_{X(C)} = 1000$.

Absorbent media is made by water absorbent fibres which increase in size during the absorption process.

Free water is thus bonded to the filter media and completely removed from the system (it cannot even be squeezed out).



Absorber media layer

The Filter Media has absorbed water

Fabric that absorbs water

By removing water from your fluid power system, you can prevent such key problems as:

- corrosion (metal etching)
- loss of lubricant power
- accelerated abrasive wear in hydraulic components
- valve-locking
- bearing fatigue
- viscosity variance (reduction in lubricating properties)
- additive precipitation and oil oxidation
- increase in acidity level
- increased electrical conductivity (loss of dielectric strength)
- slow/weak response of control systems

For more details please refer to our dedicate brochure WATER REMOVAL"

20

(12) THE ANTI-STATIC FILTERS

zerospark is a specialist solution designed to solve the problem of electrostatic discharge inside hydraulic filters. Caused by the electrical charge build-up due to the passage of oil through the filters, this can result in damage to filter elements, oils and circuit components. It can even cause fire hazards in environments where flammable materials are present.

THE TRIBOELECTRIC EFFECT

The body with the most electronegativity strips electrons from the other, generating a build-up of a net negative charge on itself. The other body is charged by the same amount but with the opposite sign, giving rise to very high potential differences. These, if not dissipated, can give rise to electrostatic discharges.

1. Contact

2. Distance ≤ 10 mm

4. Electrostatic charged bodies

For more details please refer to our dedicate brochure "ZEROSPARK"

FILTER SIZING

INDEX

	i ugc
CALCULATION	22
CORRECTIVE FACTOR	23

THE CORRECT FILTER SIZING HAS TO BE BASED ON THE TOTAL PRESSURE DROP DEPENDING ON THE APPLICATION.

FOR EXAMPLE, THE MAXIMUM TOTAL PRESSURE DROP ALLOWED BY A NEW AND CLEAN RETURN FILTER HAS TO BE IN THE RANGE 0.4 - 0.6 bar / 5.80 - 8.70 psi.

The pressure drop calculation is performed by adding together the value of the housing with the value of the filter element. The pressure drop Δpc of the housing is proportional to the fluid density (kg/dm³/lb/ft³).

The filter element pressure drop Δpe is proportional to its viscosity (mm²/s / SUS), the corrective factor Y have to be used in case of an oil viscosity different than 30 mm²/s (cSt) / 150 SUS.

Sizing data for single filter element, head at top

 Δpc = Filter housing pressure drop [bar / psi]

 Δpe = Filter element pressure drop [bar / psi]

Y = Corrective factor Y (see correspondent table), depending on the filter type, on the filter element size, on the filter element length and on the filter media

Q = flow rate (l/min - gpm)

V1 reference oil viscosity = 30 mm²/s (cSt) /150 SUS

V2 = operating oil viscosity in mm²/s (cSt) / SUS

Filter element pressure drop calculation with an oil viscosity different than 30 mm²/s (cSt) / 150 SUS

International system:

 $\Delta pe = Y : 1000 \times Q \times (V2:V1)$

Imperial system:

 $\Delta pe = Y : 17.2 \times Q \times (V2:V1)$

 Δp Tot. = $\Delta pc + \Delta pe$

Verification formula

 Δp Tot. $\leq \Delta p$ max allowed

Maximum total pressure drop (Δp max) allowed by a new and clean filter

Filter family	Δp max				
	[bar] [psi]				
Suction	0.08 bar	1.15 psi			
Return	0.50 bar	7.25 psi			
Return - Suction (*)	1.50 bar	22.00 psi			
Low & Medium Pressure/Duplex	0.70 bar	10.15 psi			
High Pressure Pressure/Duplex	1.50 bar	22.00 psi			
Stainless Steel	1.50 bar	22.00 psi			
ATEX	1.50 bar	22.00 psi			

(*) The suction flow rate should not exceed 30% of the return flow rate

Generic filter calculation example

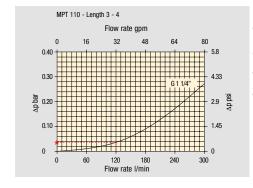
Application data:

Tank top return filter

Pressure Pmax = 10 bar / 145.03 psi

Flow rate Q = 120 l/min / 31.7 gpm

Viscosity $V2 = 46 \text{ mm}^2/\text{s} \text{ (cSt)} / 216 \text{ SUS}$


Oil density = $0.86 \text{ kg/dm}^3 / 53.68 \text{ lb/ft}^3$

Required filtration efficiency = $25 \, \mu m$ with absolute filtration

With bypass valve and G 1 1/4" inlet connection

Calculation:

 $\Delta pc = 0.03 \text{ bar / } 0.43 \text{ psi (see graphic below)}$

Filter housings Δp pressure drop. The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

 $\Delta pe = (2.00: 1000) \times 120 \times (46: 30) = 0.37 \text{ bar}$ $\Delta pe = (2.00: 17.2) \times 32 \times (216: 150) = 5.36 \text{ psi}$

Filter element				lute filt i H Series				inal filtr N Series	
Туре	Туре		A06	A10	A16	A25	P(00)10	P(00)25	M(00)25 M(00)60 M(00)90
Return filte	rs								
		74.00	50.08	20.00	16.00	9.00	6.43	5.51	4.40
MF 020	2	29.20	24.12	8.00	7.22	5.00	3.33	2.85	2.00
WI 020	3	22.00	19.00	6.56	5.33	4.33	1.68	1.44	1.30
MF 030 MFX 030	1	74.00	50.08	20.00	16.00	9.00	6.43	5.51	3.40
	1	28.20	24.40	8.67	8.17	6.88	4.62	3.96	1.25
MF 100	2	17.33	12.50	6.86	5.70	4.00	3.05	2.47	1.10
MFX 100	3	10.25	9.00	3.65	3.33	2.50	1.63	1.32	0.96
	4	6.10	5.40	2.30	2.20	2.00	1.19	0.96	0.82

 Δp Tot. = 0.03 + 0.37 = 0.4 bar Δp Tot. = 0.43 + 5.36 = 5.79 psi

The selection is correct because the total pressure drop value is inside the admissible range for top tank return filters.

In case the allowed max total pressure drop is not verified, it is necessary to repeat the calculation changing the filter length/size.

SUCTION FILTERS

Filter element		Nominal filtration Collapse $\Delta P: A = 1$ bar								
Туре	Length	P10	P25	M25	M60	M90	M250			
SF 250	1	78.00	48.00	28.00	24.00	9.33	9.33			
SF 503	2	25.88	20.88	10.44	10.00	3.78	3.78			
SF 504	3	15.20	14.53	5.14	4.95	2.00	2.00			
SF 505	4	3.25	2.55	1.55	1.35	0.71	0.71			
SF 510	5	1.96	1.68	0.85	0.72	0.24	0.24			
SF 535	2	1.06	0.84	0.42	0.33	0.17	0.17			
SF 540	4	1.06	0.84	0.42	0.33	0.17	0.17			
FEX 060	-	4.58	3.22	1.02	0.89	0.63	0.63			
FEX 080	-	1.97	1.38	0.62	0.45	0.29	0.29			
FEX 110	-	1.33	1.12	0.22	0.18	0.14	0.14			
FEX 160	-	0.90	0,76	0.15	0.10	0.09	0.09			

RETURN FILTERS

Reference oil viscosity 30 mm²/s

Filter eleme	nt		A	bsolute filtrati H Series	Nominal filtration N Series				
Туре	Length	A03	A06	A10	A16	A25	P10	P25	M25 - M60 - M90
	1	74.00	50.08	20.00	16.00	9.00	6.43	5.51	4.40
MF 020	2	29.20	24.12	8.00	7.22	5.00	3.33	2.85	2.00
	3	22.00	19.00	6.56	5.33	4.33	1.68	1.44	1.30
MF 030 MFX 030	1	74.00	50.08	20.00	16.00	9.00	6.43	5.51	3.40
	1	28.20	24.40	8.67	8.17	6.88	4.62	3.96	1.25
MF 100	2	17.33	12.50	6.86	5.70	4.00	3.05	2.47	1.10
MFX 100	3	10.25	9.00	3.65	3.33	2.50	1.63	1.32	0.96
	4	6.10	5.40	2.30	2.20	2.00	1.19	0.96	0.82
MF 180	1	3.67	3.05	1.64	1.56	1.24	1.18	1.06	0.26
MFX 180	2	1.69	1.37	0.68	0.54	0.51	0.43	0.39	0.12
MF 190 MFX 190	2	1.69	1.37	0.60	0.49	0.44	0.35	0.31	0.11
	1	3.20	2.75	1.39	1.33	1.06	0.96	0.87	0.22
MF 400 MFX 400	2	2.00	1.87	0.88	0.85	0.55	0.49	0.45	0.13
100	3	1.90	1.60	0.63	0.51	0.49	0.39	0.35	0.11
MF 750 MFX 750	1	1.08	0.84	0.49	0.36	0.26	0.21	0.19	0.06
MLX 250	2	3.00	3.04	1.46	1.25	1.17	_	_	M25
		0.00	0.01	11.10	1120				0.20
MLX 660	2	1.29	1.26	0.52	0.44	0.38	-	-	M25 0.10
CU 025		78.00	48.00	28.00	24.00	9.33	9.33	8.51	1.25
CU 040		25.88	20.88	10.44	10.00	3.78	3.78	3.30	1.25
CU 100		15.20	14.53	5.14	4.95	2.00	2.00	0.17	1.10
CU 250		3.25	2.55	1.55	1.35	0.71	0.71	0.59	0.25
CU 630		1.96	1.68	0.85	0.72	0.24	0.42	0.36	0.09
CU 850		1.06	0.84	0.42	0.33	0.17	0.17	0.13	0.04

TO BE CONTINUED >>

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media.

FILTER SIZING Corrective factor

RETURN FILTERS

Filter eleme	nt		A	bsolute filtratio H Series	on		Nominal filtration N Series			
Туре	Length	A03	A06	A10	A16	A25	P10	P25	M25 - M60 - M90	
									M25	
MR 250	2	3.61	4.08	1.81	1.71	1.35	-	-	0.55	
IVIN 200	4	2.10	1.70	1.14	0.77	0.53	-	-	0.60	
	1	19.00	17.00	6.90	6.30	4.60	2.94	2.52	1.60	
	2	11.70	10.80	4.40	4.30	3.00	2.94	2.52	1.37	
MR 100	3	7.80	6.87	3.70	3.10	2.70	2.14	1.84	1.34	
	4	5.50	4.97	2.60	2.40	2.18	1.72	1.47	1.34	
	5	4.20	3.84	2.36	2.15	1.90	1.60	1.37	1.34	
	1	5.35	4.85	2.32	1.92	1.50	1.38	1.20	0.15	
MR 250	2	4.00	3.28	1.44	1.10	1.07	0.96	0.83	0.13	
IVIN 200	3	2.60	2.20	1.08	1.00	0.86	0.77	0.64	0.12	
	4	1.84	1.56	0.68	0.56	0.44	0.37	0.23	0.11	
	1	3.10	2.48	1.32	1.14	0.92	0.83	0.73	0.09	
	2	2.06	1.92	0.82	0.76	0.38	0.33	0.27	0.08	
MR 630	3	1.48	1.30	0.60	0.56	0.26	0.22	0.17	0.08	
	4	1.30	1.20	0.48	0.40	0.25	0.21	0.16	0.08	
	5	0.74	0.65	0.30	0.28	0.13	0.10	0.08	0.04	
	1	0.60	0.43	0.34	0.25	0.13	0.12	0.09	0.03	
MR 850	2	0.37	0.26	0.23	0.21	0.11	0.08	0.07	0.03	
UCO AIVI	3	0.27	0.18	0.17	0.17	0.05	0.04	0.04	0.02	
	4	0.23	0.16	0.13	0.12	0.04	0.03	0.03	0.02	

RETURN / SUCTION FILTERS

Filter elemer	nt	Absolute filtration					
Туре	Length	A10	A16	A25			
RSX 116	1	5.12	4.33	3.85			
NOV 110	2	2.22	1.87	1.22			
DOV 405	1	2.06	1.75	1.46			
RSX 165 RSX 166	2	1.24	1.05	0.96			
N3X 100	3	0.94	0.86	0.61			

Filter elemen	t	Absolute filtration N Series								
Туре	Length	A03	A06	A10	A16	A25	P10	P25	M25 - M60 - M90	
	1	16.25	15.16	8.75	8.14	5.87	2.86	2.65	0.14	
011440	2	12.62	10.44	6.11	6.02	4.16	1.60	1.49	0.12	
CU 110	3	8.57	7.95	5.07	4.07	2.40	1.24	1.15	0.11	
	4	5.76	4.05	4.05	2.36	1.14	0.91	0.85	0.05	

LOW & MEDIUM PRESSURE FILTERS

Filter element			Al	bsolute filtrati N - W Series	Nominal filtration N Series				
Туре	Length	A03	A06	A10	A16	A25	P10	P25	M25
	1	16.25	15.16	8.75	8.14	5.87	2.86	2.65	0.14
CU 110	2	12.62	10.44	6.11	6.02	4.15	1.60	1.49	0.12
00 110	3	8.57	7.95	5.07	4.07	2.40	1.24	1.15	0.11
	4	5.76	4.05	2.80	2.36	1.14	0.91	0.85	0.05
	1	5.30	4.80	2.00	1.66	1.32	0.56	0.43	0.12
CU 210	2	3.44	2.95	1.24	1.09	0.70	0.42	0.35	0.09
	3	2.40	1.70	0.94	0.84	0.54	0.33	0.23	0.05
	016	7.95	7.20	3.00	2.49	1.98	0.84	0.65	0.18
DN	025	5.00	4.53	1.89	1.57	1.25	0.53	0.41	0.11
	040	3.13	2.66	1.12	0.98	0.63	0.38	0.32	0.08
	2	3.14	2.55	1.46	1.22	0.78	0.75	0.64	0.19
	3	2.15	1.70	0.94	0.78	0.50	0.40	0.34	0.10
CU 400	4	1.60	1.28	0.71	0.61	0.40	0.34	0.27	0.08
	5	1.00	0.83	0.47	0.34	0.20	0.24	0.19	0.06
	6	0.82	0.58	0.30	0.27	0.17	0.22	0.18	0.105
CU 900	1	0.86	0.63	0.32	0.30	0.21	-	-	0.05
OII OEO	2	1.03	0.80	0.59	0.40	0.26	-	-	0.05
CU 950	3	0.44	0.40	0.27	0.18	0.15	-	-	0.02
MR 630	7	0.88	0.78	0.36	0.34	0.16	0.12	0.96	0.47

HIGH PRESSURE FILTERS

Reference oil viscosity 30 mm²/s

Filter element			A	bsolute filtrati N - R Series	on		Nominal filtration N Series
Туре	Length	A03	A06	A10	A16	A25	M25
	1	332.71	250.07	184.32	152.36	128.36	-
HP 010	2	220.28	165.56	74.08	59.13	37.05	-
HP 011	3	123.24	92.68	41.48	33.08	20.72	-
	4	77.76	58.52	28.37	22.67	16.17	-
	2	70.66	53.20	25.77	20.57	14.67	4.90
HP 039	3	36.57	32.28	18.00	13.38	8.00	2.90
	4	26.57	23.27	12.46	8.80	5.58	2.20
	1	31.75	30.30	13.16	12.3	7.29	1.60
LID OFO	2	24.25	21.26	11.70	9.09	4.90	1.40
HP 050 HPX 050	3	17.37	16.25	8.90	7.18	3.63	1.25
III X 030	4	12.12	10.75	6.10	5.75	3.08	1.07
	5	7.00	6.56	3.60	3.10	2.25	0.80
	1	58.50	43.46	23.16	19.66	10.71	1.28
HP 065	2	42.60	25.64	16.22	13.88	7.32	1.11
	3	20.50	15.88	8.18	6.81	3.91	0.58
	1	20.33	18.80	9.71	8.66	4.78	2.78
HP 135	2	11.14	10.16	6.60	6.38	2.22	1.11
	3	6.48	6.33	3.38	3.16	2.14	1.01
	1	17.53	15.91	7.48	6.96	5.94	1.07
HP 150	2	8.60	8.37	3.54	3.38	3.15	0.58
	3	6.53	5.90	2.93	2.79	2.12	0.49

TO BE CONTINUED >>

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media.

FILTER SIZING Corrective factor

HIGH PRESSURE FILTERS

Filter element			Absolute filtration N - R Series						
Туре	Length	A03	A06	A10	A16	A25	M25		
	1	10.88	9.73	5.02	3.73	2.54	1.04		
HP 320	2	4.40	3.83	1.75	1.48	0.88	0.71		
NP 320	3	2.75	2.11	1.05	0.87	0.77	0.61		
	4	2.12	1.77	0.98	0.78	0.55	0.47		
	1	4.44	3.67	2.30	2.10	1.65	0.15		
	2	3.37	2.77	1.78	1.68	1.24	0.10		
HP 500	3	2.22	1.98	1.11	1.09	0.75	0.08		
	4	1.81	1.33	0.93	0.86	0.68	0.05		
	5	1.33	1.15	0.77	0.68	0.48	0.04		
	1	3.65	2.95	2.80	1.80	0.90	0.38		
HP 325	2	2.03	1.73	1.61	1.35	0.85	0.36		
	3	1.84	1.42	1.32	1.22	0.80	0.35		

Filter element				bsolute filtrati o S - H - U Series		
Туре	Length	A03	A06	A10	A16	A25
	1	424.58	319.74	235.17	194.44	163.78
HP 010	2	281.06	211.25	94.35	75.45	47.26
HP 011	3	130.14	97.50	43.63	34.82	21.81
	4	109.39	82.25	36.79	29.37	18.40
	2	73.00	57.00	28.00	24.00	17.20
HP 039	3	40.90	36.33	21.88	18.80	11.20
	4	31.50	28.22	17.22	9.30	6.70
	1	47.33	34.25	21.50	20.50	14.71
HP 050	2	29.10	25.95	10.04	10.90	5.88
HPX 050	3	20.85	19.50	10.68	8.61	4.36
III X 050	4	14.55	12.90	7.32	6.90	3.69
	5	9.86	9.34	6.40	4.80	2.50
	1	29.16	25.33	13.00	12.47	5.92
HP 135	2	14.28	11.04	7.86	7.90	4.44
	3	8.96	7.46	4.89	4.16	3.07
	1	13.00	12.19	6.80	6.40	3.32
HP 320	2	6.45	5.31	3.01	2.89	1.73
HF 320	3	4.13	3.14	1.90	1.78	1.17
	4	3.17	2.71	1.80	1.70	1.10
	1	9.70	8.81	4.55	4.47	2.80
	2	5.46	4.63	2.88	2.68	2.20
HP 500	3	3.90	3.74	2.22	2.07	1.53
	4	3.10	2.84	1.56	1.53	1.02
	5	1.93	1.83	1.14	1.08	0.69

STAINLESS STEEL HIGH PRESSURE FILTERS

Filter element			Absolute filtration N - R Series							
Туре	Length	A03	A06	A10	A16	A25	M25			
	1	332.71	250.07	184.32	152.36	128.36	-			
HP 010	2	220.28	165.56	74.08	59.13	37.05	-			
HP 011	3	123.24	92.68	41.48	33.08	20.72	-			
	4	77.76	58.52	28.37	22.67	16.17	-			
	2	70.66	53.20	25.77	20.57	14.67	4.90			
HP 039	3	36.57	32.28	18.00	13.38	8.00	2.90			
	4	26.57	23.27	12.46	8.80	5.58	2.20			
	1	31.75	30.30	13.16	12.3	7.29	1.60			
	2	24.25	21.26	11.70	9.09	4.90	1.40			
HP 050	3	17.37	16.25	8.90	7.18	3.63	1.25			
	4	12.12	10.75	6.10	5.75	3.08	1.07			
	5	7.00	6.56	3.60	3.10	2.25	0.80			
	1	20.33	18.80	9.71	8.66	4.78	2.78			
HP 135	2	11.14	10.16	6.60	6.38	2.22	1.11			
	3	6.48	6.33	3.38	3.16	2.14	1.01			

Filter element		Absolute filtration S - H - U Series							
Туре	Length	A03	A06	A10	A16	A25			
	1	424.58	319.74	235.17	194.44	163.78			
HP 010	2	281.06	211.25	94.35	75.45	47.26			
HP 011	3	130.14	97.50	43.63	34.82	21.81			
	4	109.39	82.25	36.79	29.37	18.40			
	2	73.00	57.00	28.00	24.00	17.20			
HP 039	3	40.90	36.33	21.88	18.80	11.20			
	4	31.50	28.22	17.22	9.30	6.70			
	1	47.33	34.25	21.50	20.50	14.71			
	2	29.10	25.95	10.04	10.90	5.88			
HP 050	3	20.85	19.50	10.68	8.61	4.36			
	4	14.55	12.90	7.32	6.90	3.69			
	5	9.86	9.34	6.40	4.80	2.50			
	1	29.16	25.33	13.00	12.47	5.92			
HP 135	2	14.28	11.04	7.86	7.90	4.44			
	3	8.96	7.46	4.89	4.16	3.07			

Introduction

FILTER SIZING Corrective factor

FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE

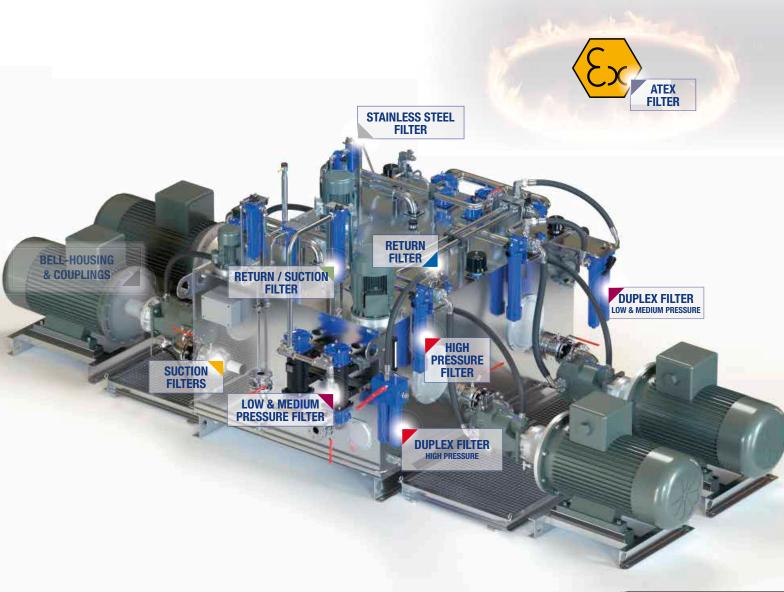
Filter element			Absolute filtration N - R Series						
Туре	Length	A03	A06	A10	A16	A25	M25		
	1	332.71	250.07	184.32	152.36	128.36	-		
HP 010	2	220.28	165.56	74.08	59.13	37.05	-		
HP 011	3	123.24	92.68	41.48	33.08	20.72	-		
	4	77.76	58.52	28.37	22.67	16.17	-		
	2	70.66	53.20	25.77	20.57	14.67	4.90		
HP 039	3	36.57	32.28	18.00	13.38	8.00	2.90		
	4	26.57	23.27	12.46	8.80	5.58	2.20		
	1	31.75	30.30	13.16	12.3	7.29	1.60		
	2	24.25	21.26	11.70	9.09	4.90	1.40		
HPX 050	3	17.37	16.25	8.90	7.18	3.63	1.25		
	4	12.12	10.75	6.10	5.75	3.08	1.07		
	5	7.00	6.56	3.60	3.10	2.25	0.80		
	1	20.33	18.80	9.71	8.66	4.78	2.78		
HP 135	2	11.14	10.16	6.60	6.38	2.22	1.11		
	3	6.48	6.33	3.38	3.16	2.14	1.01		

Filter element		Absolute filtration S - H - U Series							
Туре	Length	A03	A06	A10	A16	A25			
	1	424.58	319.74	235.17	194.44	163.78			
HP 010	2	281.06	211.25	94.35	75.45	47.26			
HP 011	3	130.14	97.50	43.63	34.82	21.81			
	4	109.39	82.25	36.79	29.37	18.40			
	2	73.00	57.00	28.00	24.00	17.20			
HP 039	3	40.90	36.33	21.88	18.80	11.20			
	4	31.50	28.22	17.22	9.30	6.70			
	1	47.33	34.25	21.50	20.50	14.71			
	2	29.10	25.95	10.04	10.90	5.88			
HPX 050	3	20.85	19.50	10.68	8.61	4.36			
	4	14.55	12.90	7.32	6.90	3.69			
	5	9.86	9.34	6.40	4.80	2.50			
	1	29.16	25.33	13.00	12.47	5.92			
HP 135	2	14.28	11.04	7.86	7.90	4.44			
	3	8.96	7.46	4.89	4.16	3.07			

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media.

Filters sizing software

The web-based software program will allow you to select the most suitable MP Filtri's Filters, in accordance with your process design requirements.


The program will automatically check your input design process prior to propose you the acceptable solutions and create an output in PDF report style format.

The MP Filtri Selection Tool software program is easy to use with a flexible fast design method and provides improved layout formats with full descriptions.

The web-based tool is available at MP Filtri website at following link: https://www.mpfiltri.com/tools/

The related, complete user guide is available as Manual and downloadable from the "Download" section of MP Filtri website, as well as scanning the following QR code

Suction filters are used as safety filters to protect pumps from gross contamination which can cause them to grip.

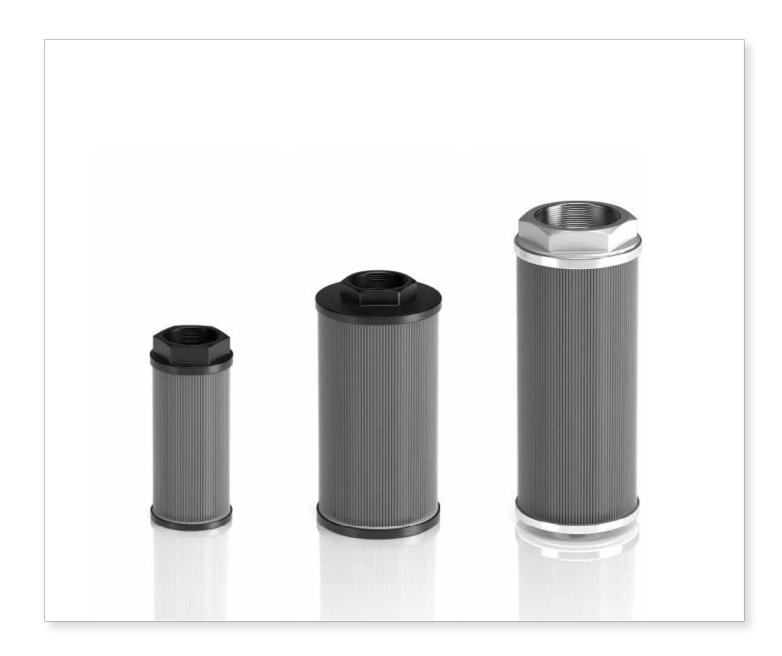
They are available in 2 styles:

- Suction Strainers (STR, MPA, MPM)
- SF2 external filters, for mounting semi-immersed under the oil level
- SFEX ELIXIR® series, for protection of the downstream pump against the coarse contamination

SF2 semi-immersed filters, which shut-off oil flow while the filter element is being replaced, replace the butterfly valves usually used for servicing hydraulic pumps.

For the proper corrective factor Y see chapter at page 23

Suction filters


STR & MPA - MPM	page 33
SFEX	40
SF2 250 - 350	51
SF2 500	59
INDICATORS	709

STR & MPA - MPM series

Flow rate up to 1000 I/min

STR & MPA-MPM GENERAL INFORMATION

Description

Suction filters

Flow rate up to 1000 I/min

STR

STR is a range of suction strainers for protection of the downstream pump against the coarse contamination.

They are placed below the oil level directly connected to the suction line of the pump.

Available features:

- -Female threaded connections up to 3", for a maximum flow rate of 1000 l/min
- Bypass valve, to relieve excessive pressure drop across the filter media

Common application:

- Mobile machines (Construction and Agriculture machines)
- Industrial equipment

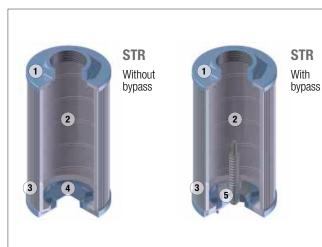
MPA - MPM

MPA and MPM are ranges of suction strainers for protection of the downstream pump against the coarse contamination.

They are placed below the minimum oil level, directly connected to the suction line of the pump.

The robust design allows the use of these filters in any heavy duty application.

Available features:


- Female threaded connections up to 3", for a maximum flow rate of 1000 I/\min
- Magnetic column (MPM), to hold the ferrous particles

Common application:

Industrial equipment

Quantity

Series and size		pcs/pack
STR	045 - 050	12
STR	065 - 070 - 086 - 100	6
STR	140 - 150	1
MPA - MPM 012		12
MPA - MPN	1 015 - 025 - 030 - 045 - 050 - 075 - 095 - 120 - 150	6
MPA - MPN	1 180 - 220 - 280 - 300 - 380 - 430	1

Technical data

STR materials

- 1 Connection: Polyamide, GF reinforced
- 2 Core tube: Tinned steel
- 3 Wire mesh
- 4 End cap: Polyamide, GF reinforced
- 5 Bypass valve: Polyamide, GF reinforced Steel

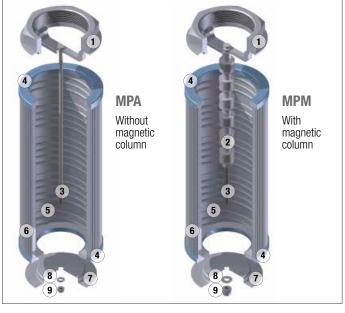
MPA - MPM materials

- 1 Connection: Aluminium
- 2 Magnetic column
- 3 Tie rod: Galvanized steel
- 4 End cap: Galvanized steel
- 5 Core tube: Galvanized steel
- 6 Filter media: Wire mesh
- 7 Bottom: Galvanized steel
- 8 Washer: Galvanized steel
- 9 Self-locking nut: Galvanized steel Polyamide

Bypass valve

Opening pressure 30 kPa (0.3 bar)

Elements


Fluid flow through the filter element from OUT to IN.

Temperature

From -25 °C to +110 °C

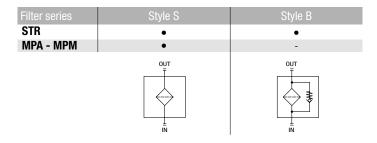
Weights [kg]

Filter series	
STR	see page 37
MPA - MPM	see page 39

GENERAL INFORMATION STR & MPA-MPM

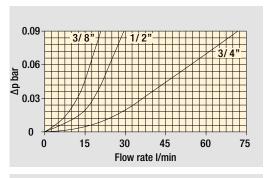
FILTER ASSEMBLY SIZING Flow rates [I/min]

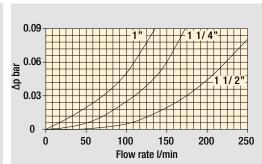
Filter series	Thread I/min
	3/8" 19
	1/2" 28
	3/4" 67
	1" 126
CTD O MDA MDM	1 1/4" 167
STR & MPA - MPM	1 1/2" 258
	2" 480
	2 1/2" 854
	2" 480
	3" 995

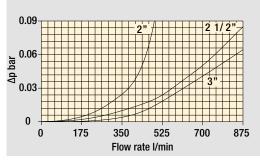

Maximum flow rate for a complete suction filter with a pressure drop $\Delta p = 0.08$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.


You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

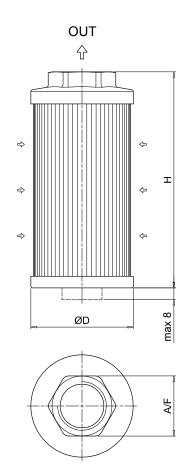

Hydraulic symbols



Pressure drop

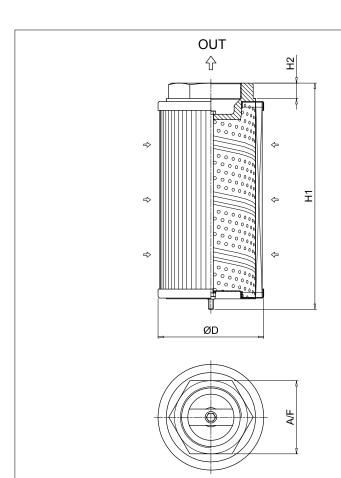
Filters pressure drop Δp in function of connection type

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. ∆p varies proportionally with density.

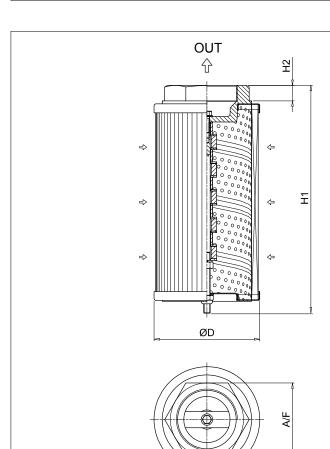

Designation & Ordering code

								COMPL	ETE FI	TER								
Seri	es and size	,								Configuration exa	mple 1:	STR04	5		В	G1	M60	P01
STR										Configuration exa				1	S	G2		
STR	050									ooringaration cae	uripio 2.	OTITIO	,	<u>.</u>	Ť] [UZ	IVIZOU	
STR	065																	
STR	070																	
STR	086																	
STR	100																	
STR	140																	
STR	150																	
Len	gth and cor	nnecti	on	_	_	_	_	_	l									
			0 STR065	STR070	STR086	STR100	STR140	STR150						l				
1	3/8"	3/8"		1/2"	1 1/2"	1 1/4"	1 1/2"	2"										
2	1/2"	1/2"		3/4"	2"	1 1/4"	2"	2 1/2"										
3	-		3/4"	3/4"	1 1/2"	1 1/2"	2"	3"										
4	-	-	1"	1"	2"	2"	2 1/2"	-										
5	-	-	-	-	1 1/2"	1 1/2"	3"	-										
6	-	_	-	1/2"	2"	-	3"	-	•									
									-									
Dom	ana walua								ı									
S	ass valve Withou	t hyn:	aee															
B			0.3 bar															
	vviui by	γρασσ	U.U Dai															
Thre																		
G1	GAS																	
G2	NPT																	
Filtr	ation rating																	
M25		esh	25 µm						_									
M60	Wire m	esh	60 µm													xecutio	on	
M90	Wire m	esh	90 µm														P Filtri sta	andard
M25	0 Wire m	esh	250 µm												P	xx Ci	ustomized	

(36)



	STR									
Size	Length	Thread	ØD [mm]	H [mm]	A/F [mm]	Weight [kg]				
045	1 2	3/8" 1/2"	46 46	105 105	30 30	0.15 0.19				
050	1 2	3/8" 1/2"	52 52	79 79	30 30	0.11 0.11				
065	1 2 3 4	1/2" 3/4" 3/4" 1"	65 65 65 65	110 110 144 144	41 41 41 41	0.19 0.22 0.24 0.22				
070	1 2 3 4 6	1/2" 3/4" 3/4" 1" 1/2"	70 70 70 70 70	95 95 141 141 141	41 41 41 41 41	0.18 0.17 0.23 0.22 0.24				
086	1 2 3 4 5 6	1 1/2" 2" 1 1/2" 2" 1 1/2" 2"	86 86 86 86 86	143 143 201 201 261 261	69 69 69 69 69	0.33 0.30 0.43 0.40 0.53 0.50				
100	1 2 3 4 5	1 1/4" 1 1/4" 1 1/2" 2" 1 1/2"	99 99 99 99	137 227 227 227 227 137	69 69 69 69	0.47 0.58 0.55 0.51 0.43				
140	1 2 3 4 5 6	1 1/2" 2" 2" 2 1/2" 3" 3"	130 130 130 130 130 130	160 160 262 272 272 330	69 69 69 101 101	0.70 0.68 0.94 1.10 1.00				
150	1 2 3	2" 2 1/2" 3"	150 150 150	150 212 272	70 90 100	0.34 0.37 0.40				



Designation & Ordering code

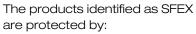
					COMPLE	TE FILTER						
Series				1			Configuration example 1	MPA	030	G1	M60	P01
MPA		gnetic columr	1				Configuration example 2	MPM	430	G2	M250	P01
MPM	With magne	etic column							- 		, T	
Conne												
012	3/8"											
015	1/2"			_								
025	1/2"			_								
030	3/4"			-								
045	3/4"			=								
050	1"			_								
075	1"											
095	1 1/4"			_								
120	1 1/4"			-								
150	1 1/2"			-								
180	1 1/2"			-								
220	2"			-								
280	2"			=								
300	2 1/2"			_								
380	2"			-								
430	3"			_								
Thread	BSP											
G1 G2	NPT			-								
uz	INFI			-								
Filtret	ion voting											
M25	ion rating Wire mesh	25 μm		I								
M60	Wire mesh	60 μm		-					FOR			
M90	Wire mesh	90 μm		=					P0	ecution 1 MP	Filtri star	ndard
M250		250 μm		-					Px		tomized	iuaiu
111200	***************************************	200 μπ		-					1.^	n out	tomizou	

	MPA									
Size	Thread	ØD	H1	H2	A/F	Weight				
0.20	modu	[mm]	[mm]	[mm]	[mm]	[kg]				
012	3/8"	50	98	16	28	0.17				
015	1/2"	50	98	16	28	0.17				
025	1/2"	70	113	16	28	0.27				
030	3/4"	70	115	18	42	0.36				
045	3/4"	70	160	18	42	0.39				
050	1"	70	160	18	42	0.35				
075	1"	99	145	18	42	0.54				
095	1 1/4"	99	148	20	60	0.63				
120	1 1/4"	99	239	20	60	0.95				
150	1 1/2"	99	239	20	60	0.91				
180	1 1/2"	130	174	20	60	0.98				
220	2"	130	162	13	80	1.00				
280	2"	130	272	13	80	1.60				
300	2 1/2"	130	281	20	90	1.67				
380	2"	130	322	13	80	1.60				
430	3"	130	335	22	106	1.93				

MPM									
Size	Thread	ØD [mm]	H1 [mm]	H2 [mm]	A/F [mm]	Weight [kg]			
012	3/8"	50	98	16	28	0.17			
015	1/2"	50	98	16	28	0.17			
025	1/2"	70	113	16	28	0.27			
030	3/4"	70	115	18	42	0.36			
045	3/4"	70	160	18	42	0.39			
050	1"	70	160	18	42	0.35			
075	1"	99	148	18	42	0.54			
095	1 1/4"	99	154	20	60	0.63			
120	1 1/4"	99	244	20	60	0.95			
150	1 1/2"	99	244	20	60	0.91			
180	1 1/2"	130	174	20	60	0.98			
220	2"	130	163	13	80	1.00			
280	2"	130	273	13	80	1.60			
300	2 1/2"	130	282	20	90	1.67			
380	2"	130	323	13	80	1.60			
430	3"	130	336	22	106	1.93			

Protect the performance of your system with MYclean.

Quality and efficiency are fundamental for MP Filtri:
this exclusive new filter element possesses polygon shape geometry and specific seal that ensures only original spare parts can be used - ensuring correct operation and higher system reliability.




With exclusive filter element you are sure that only MP Filtri filter elements can be used, ensuring the best cleaning level of the oil

Safety of constant quality protection & reliability

elements can be used, ensuring the best cleaning level of due to the use of originals filter elements.

- Italian Patent n° 102014902261205
- Canadian Patent n° 2,937,258
- European Patent n° 3 124 092 B1
- US Patent n° 20170030384 A1

SFEX series

Flow rate up to 100 l/min

INSTALLATION, SERVICE AND MAINTENANCE MANUAL AND SAFETY INSTRUCTIONS

Please scan the QR codes to get updated electronic version of the related document:

SFEX060 SFEX080

SFEX110

SFEX160

Description

Suction filters

Flow rate up to 100 l/min

SFEX are range of suction filters for protection of the downstream pump against the coarse contamination.

They are placed below the minimum oil level, directly connected to the suction line of the pump in-line mounted.

Available features:

- Female threaded connections up to 1 1/4" and flanged connections up to 1 5/8", for a maximum flow rate of 100 l/min
- Bypass valve, to relieve excessive pressure drop across the filter media
- Visual, electrical, axial and radial vacuum gauges
- MYclean interface connection for the filter element, to protect the product against non-original spare parts
- External protective wrap, to optimize the flow through the element and to save the element efficiency against non-proper handling

Common application:

- Mobile machines
- Industrial equipment

Technical data

Filter housing materials

- Head: Aluminium
- Bypass valve: Polyamide Steel
- Bowl: Polyamide

Bypass valve

Opening pressure 30 kPa (0.3 bar) ±10%

Elements

Fluid flow through the filter element from OUT to IN

Seals

Standard NBR series A

Temperature

From -25 °C to +110 °C

Note

SFEX filters are provided for vertical mounting

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]	Volumes [dm³]
SFEX 060	1.00	0.60
SFEX 080	1.15	0.80
SFEX 110	1.90	1.60
SFEX 160	2.10	2.00

Hydraulic symbols

Filter series	Style S	Style B
SFEX 060	•	•
SFEX 080	•	•
SFEX 110	•	•
SFEX 160	•	•
	OUT T II	OUT III

FILTER ASSEMBLY SIZING Flow rates [I/min]

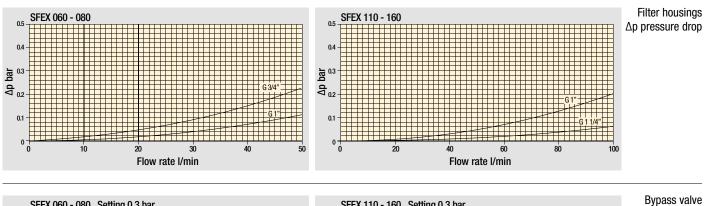
Filter element design - N Series								
Filter series	M60	M90	M250	P10	P25			
SFEX 060	26	27	27	14	17			
SFEX 080	28	29	29	21	23			

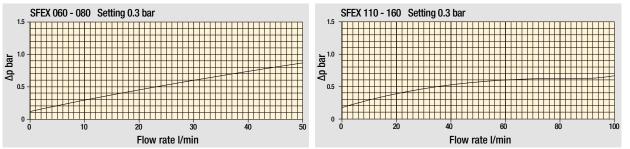
Filter series	M60	M90	M250	P10	P25	
SFEX 060	31	33	33	13	20	
SFEX 080	34	35	35	24	30	

Connections of filter under test G 1"

Filter series	M60	M90	M250	P10	P25	
SFEX 110	93	96	96	48	53	
SFEX 160	98	99	99	60	65	

Connections of filter under test G 1 1/4"

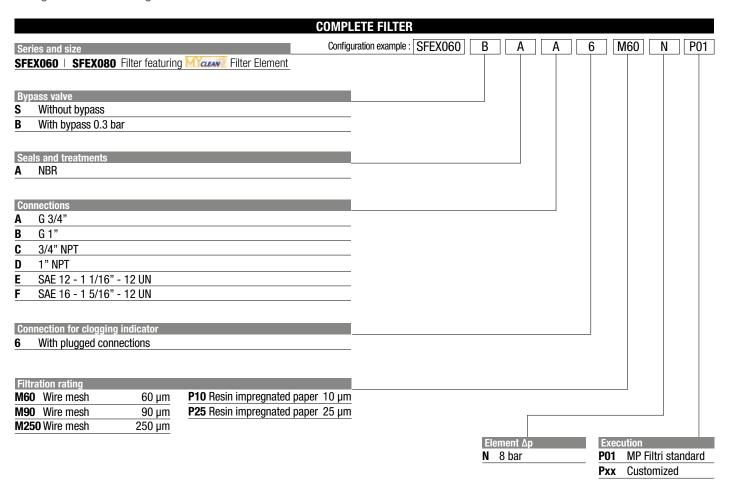

Maximum flow rate for a complete suction filter with a pressure drop $\Delta p = 0.08$ bar.

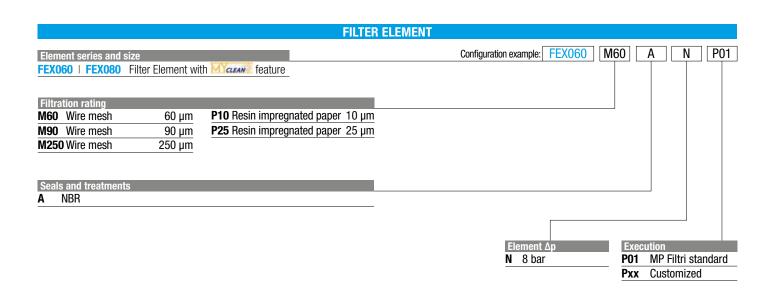

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

Please, contact our Sales Department for further additional information.

Pressure drop

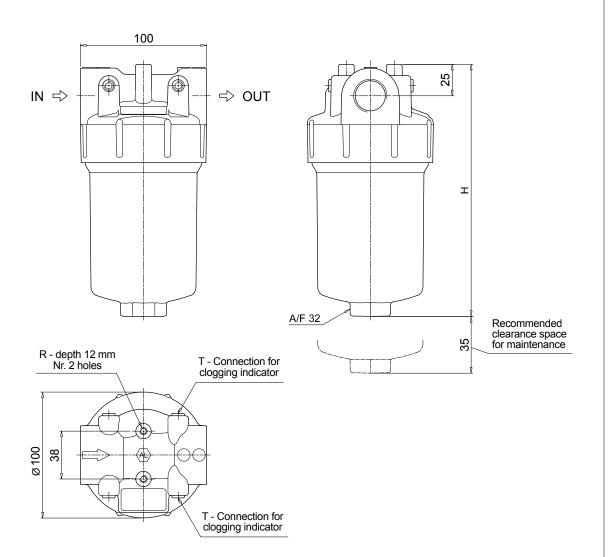



pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm 3 in compliance with ISO 3968. Δp varies proportionally with density.

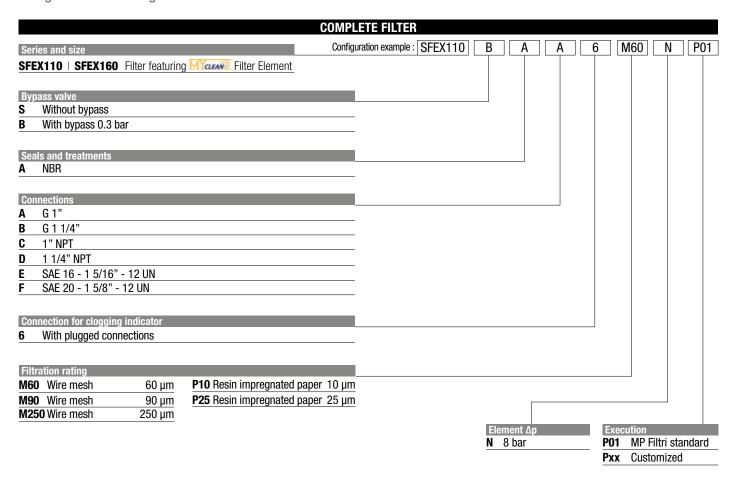
SFEX SFEX060 - SFEX080

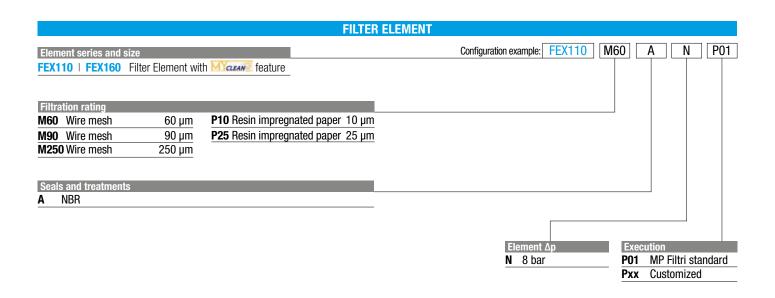
Designation & Ordering code



	CLOGGING	INDICA	ATORS	See page 709
VEB	Electrical vacuum indicator	VVB	Axial pressure gauge	
VLB	Electrical / visual vacuum indicator	VVS	Radial pressure gauge	

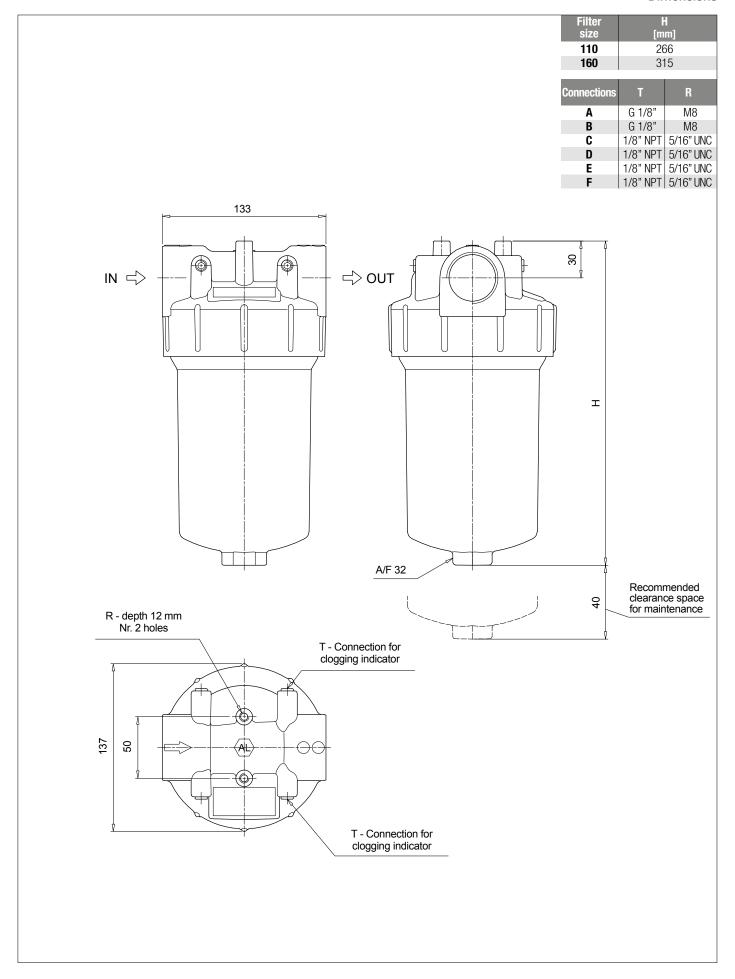
(44)

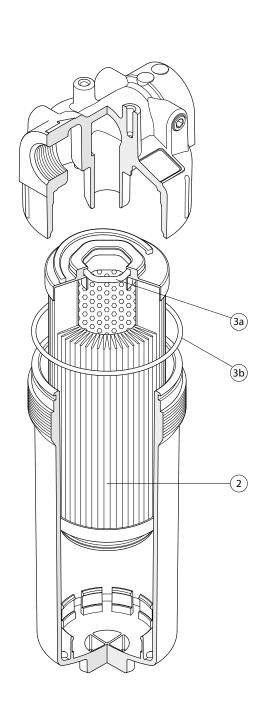

Filter size	H [mm]
060	202
080	265


Connections	Т	R
Α	G 1/8"	M6
В	G 1/8"	M6
C	1/8" NPT	1/4" UNC
D	1/8" NPT	1/4" UNC
E	1/8" NPT	1/4" UNC
F	1/8" NPT	1/4" UNC

SFEX SFEX110 - SFEX160

Designation & Ordering code





	CLOGGING	INDICA	ATORS	See page 709
VEB	Electrical vacuum indicator	VVB	Axial pressure gauge	
VLB	Electrical / visual vacuum indicator	VVS	Radial pressure gauge	

(46)

SFEX110 - SFEX160 SFEX

Item:	Q.ty: 1 pc.	Q.ty: 1 pc. (3) (3a ÷ 3b)	
Filter series	Filter element	Seal Kit code number NBR	
SFEX 060-080	See order	02050771	
SFEX 110-160	table	02050772	

SF2 250-350 series

Flow rate up to 160 I/min

SF2 250-350 general information

Description

Suction filters

Flow rate up to 160 l/min

SF2 250 and SF2 350 are ranges of suction filters with integrated shut-off valve for protection of the downstream pump against the coarse contamination.

They are placed below the minimum oil level, directly connected to the suction line of the pump.

They can be fitted on the side or below the tank, allowing a more flexible design of the tank.

The shut-off valve closes automatically when the cover is removed, allowing the filter element replacement without the fluid drop.

Available features:

- -Female threaded connections up to 1" and flanged connections up to 1 1/2", for a maximum flow rate of 160 l/min
- Multiple connections, to connect several suction lines
- Bypass valve, to relieve excessive pressure drop across the filter media
- Magnetic filter, to hold the ferrous particles
- Visual, electrical and electronic clogging indicators

Common application:

- Mobile machines
- Industrial equipment

Technical data

Filter housing materials

- Filter body: Aluminium
- Cover: Polyamide, GF reinforced
- Valve: Polyamide, GF reinforced Steel
- Anti-Emptying valve: Steel

Bypass valve

Opening pressure 30 kPa (0.3 bar) ±10%

Elements

Fluid flow through the filter element from IN to OUT

Seals

- Standard NBR series A
- Optional FPM series V

Temperature

From -25 °C to +110 °C

Note

SF2 250-350 filters mounting, see the drawings on page 55 and following.

Weights [kg]

Filter series	
SF2 250	2.6
SF2 350	2.6

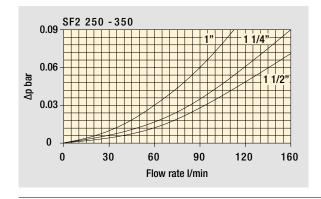
GENERAL INFORMATION SF2 250-350

FILTER ASSEMBLY SIZING Flow rates [I/min]

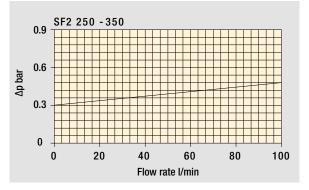
	Filter element design - N Series									
Filter series	M25 M60 M90 M250 P10 P25									
SF2 250	147 151 155 160 85 132									
SF2 350	147 151 155 160 85 132									

Maximum flow rate for a complete suction filter with a pressure drop $\Delta p = 0.08$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.


For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

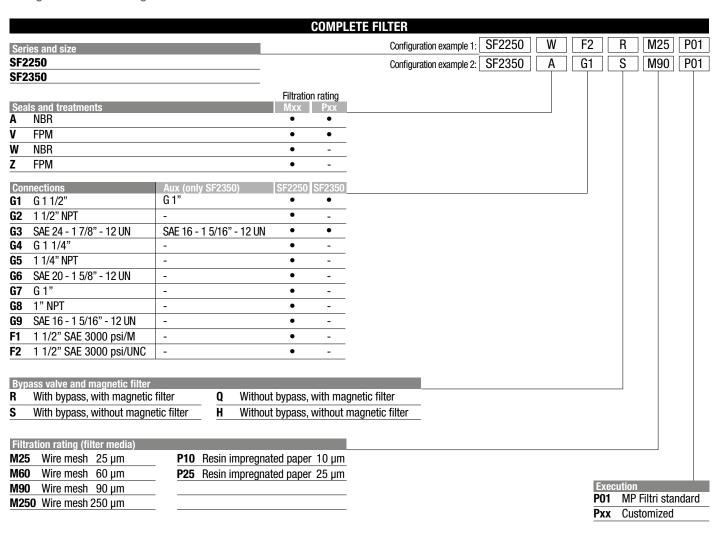
You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.


Hydraulic symbols

Filter series	Style		Style Q - H			
SF2 250	•	-	•	-		
SF2 350	-	•	-	•		
	OUT TO THE PART OF	Aux OUT OUT OUT	OUT T	AUX OUT OUT OUT IN		

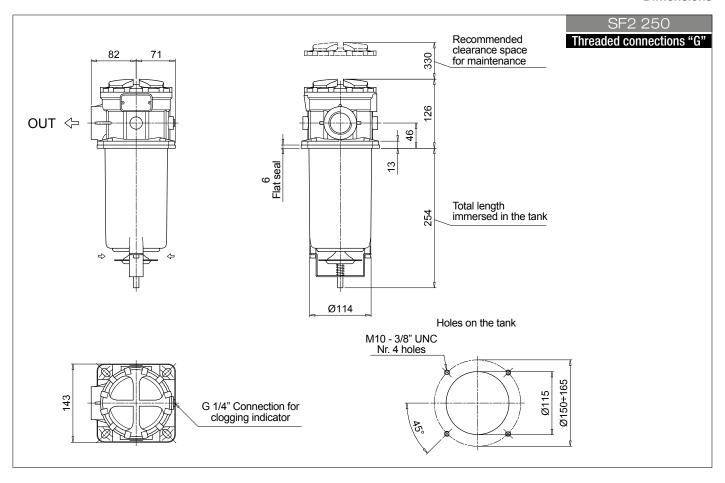
Pressure drop Filter housings Δp pressure drop

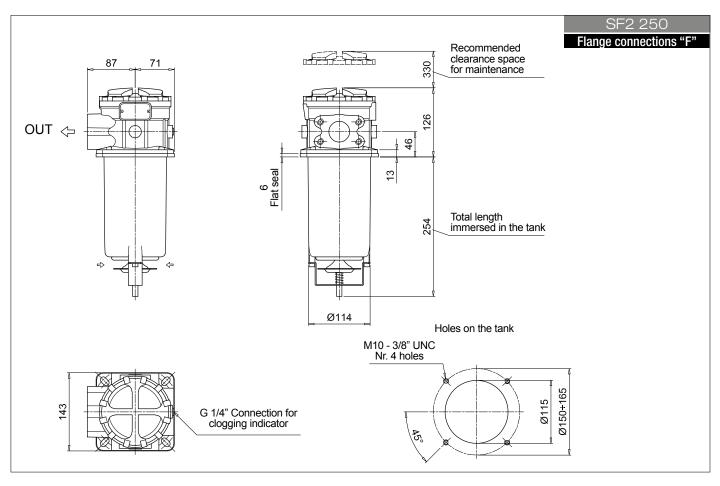
Bypass valve pressure drop



The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

SF2 250-350


Designation & Ordering code



					FILTER	RELEMENT					
Eler	nent series and size						Configuration example 1:	SF250	M25	W	P01
SF2	50						Configuration example 2:	SF250	M90	N	P01
Filtr	ation rating (filter media)										
M25	Wire mesh 25 µm	P10	Resin impregr	nated paper	10 µm				_		
M60	Wire mesh 60 µm	P25	Resin impregr	nated paper	25 µm						
M90	Wire mesh 90 µm										
M25	0 Wire mesh 250 μm										
Coo	ls and treatments			Filtration							
N	NBR			■ IVIXX	<u> </u>						
V	FPM			•	•			Exe	cution	-	
W	NBR			•	-			P01		iltri sta	ndard
Z	FPM			•	-			Рхх	Custo	mized	

	CLOGGING	INDICA	ATORS	See page 709
VEA	Electrical vacuum indicator	VVA	Axial vacuum gauge	
VLA	Electrical / visual vacuum indicator	VVR	Radial vacuum gauge	

SF2 250-350

SF2 350 Recommended clearance space for maintenance 330 82 71 126 46 6 Flat seal 5 Total length immersed in the tank Ø114 Aux OUT Holes on the tank M10 - 3/8" UNC Nr. 4 holes Ø150÷165 Ø115 155 G 1/4" Connection for clogging indicator 5, Ŷ Aux OUT

(56)

SPARE PARTS SF2 250-350

SF2 500 series

Flow rate up to 700 I/min

SF2 500 general information

Description

Suction filters

Flow rate up to 700 I/min

SF2 500 is a range of suction filters with integrated shut-off valve for protection of the downstream pump against the coarse contamination. They are placed below the minimum oil level, directly connected to the suction line of the pump.

They can be fitted on the side or below the tank, allowing a more flexible design of the tank.

The shut-off valve closes automatically when the cover is removed, allowing the filter element replacement without the fluid drop.

Available features:

- Flanged connections up to 4", for a maximum flow rate of 700 I/min
- Optional hose fitting installed, to connect the suction line without the use of flanges
- Magnetic filter, to hold the ferrous particles
- Plastic and metal handle, to close the shut-off valve before the cover removal
- Electrical switch, to signal the closed shut-off valve
- Visual, electrical and electronic clogging indicators

Common application:

Industrial equipment

Technical data

Filter housing materials

- Housing:

Anodized Aluminium

Steel (chemical heat treatment): only for SF2 535 - 540

- Cover:

Anodized Aluminium

Steel (chemical heat treatment): only for SF2 535 - 540

- Optional flange: Anodized Aluminium

Elements

Fluid flow through the filter element from IN to OUT

Seals

- Standard NBR series A
- Optional FPM series V

Temperature

From -25 °C to +110 °C

Note

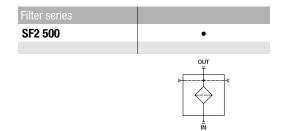
SF2 500 filters mounting, see the drawings on page 63 and following

Weights [kg]

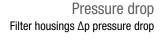
Filter series	
SF2 500-501	4.0
SF2 503	4.8
SF2 504	5.8
SF2 505	6.0
SF2 510	7.2
SF2 535	17
SF2 540	19

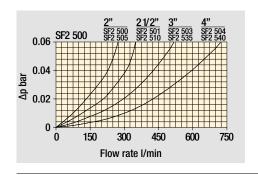
GENERAL INFORMATION SF2 500

FILTER ASSEMBLY SIZING Flow rates [I/min]

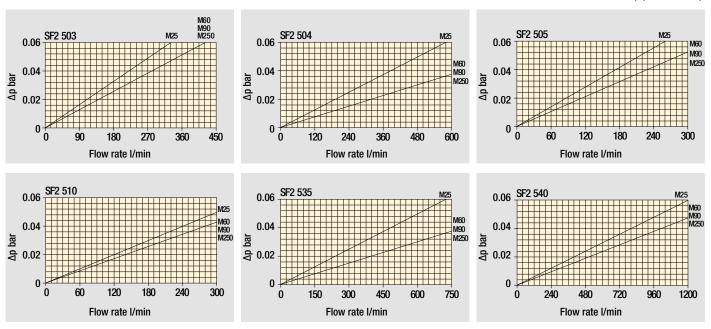

	Filter element design - N Series
Filter series	M60 M25 M90 M250
SF2 500	219 234
SF2 501	259 282
SF2 503	325 390
SF2 504	484 543
SF2 505	199 221
SF2 510	259 282
SF2 535	439 479
SF2 540	644 688

Maximum flow rate for a complete suction filter with a pressure drop $\Delta p = 0.08$ bar.

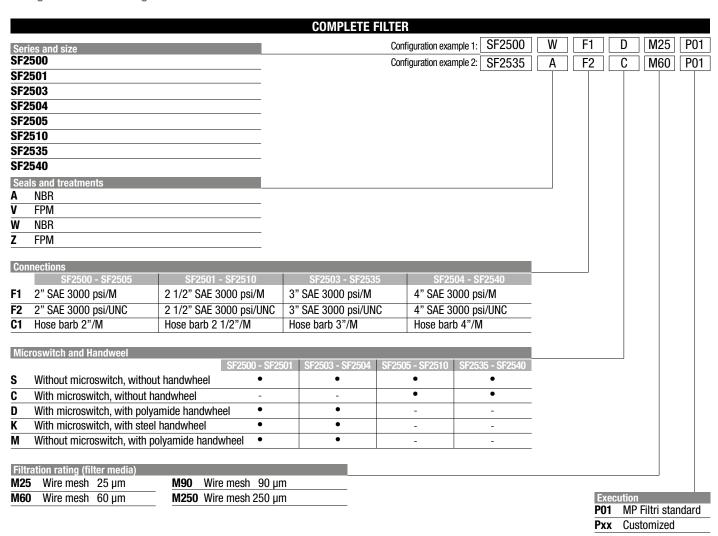

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.


For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

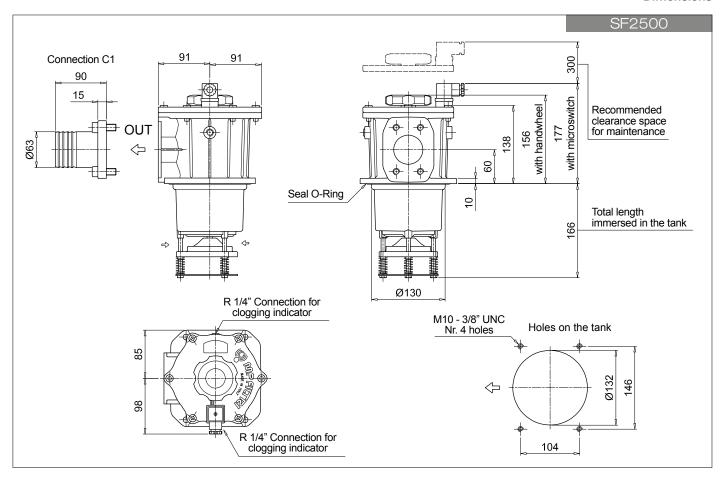


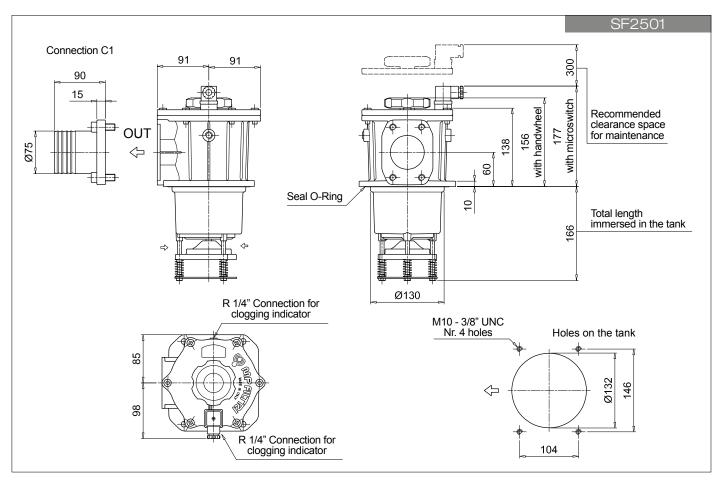
Hydraulic symbols

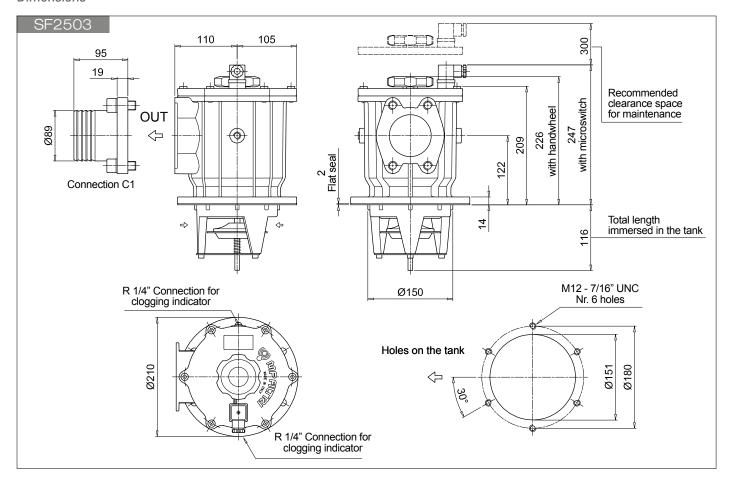


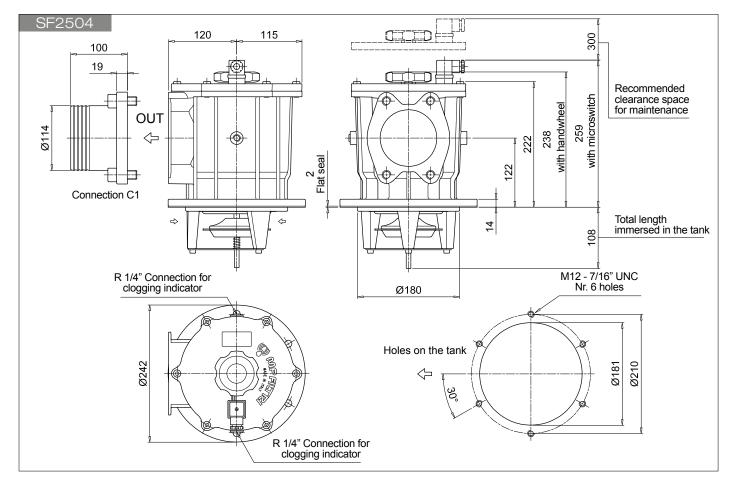
The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

SF2 500

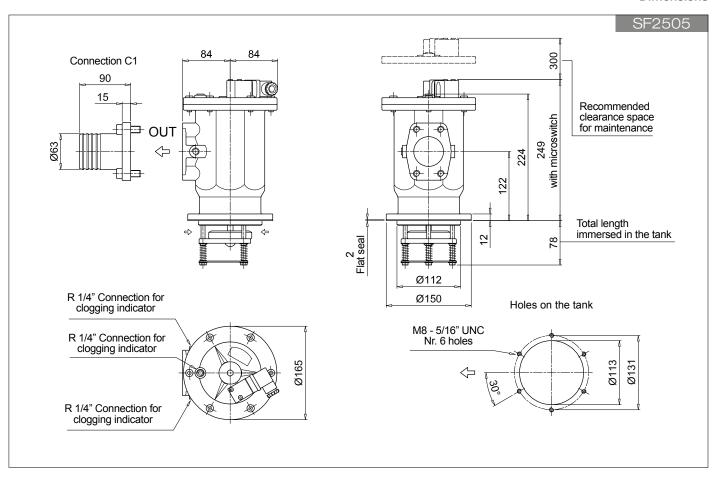

Designation & Ordering code

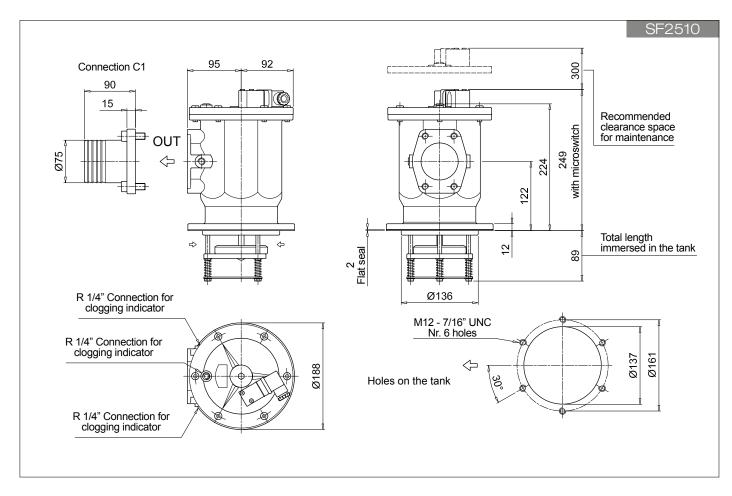


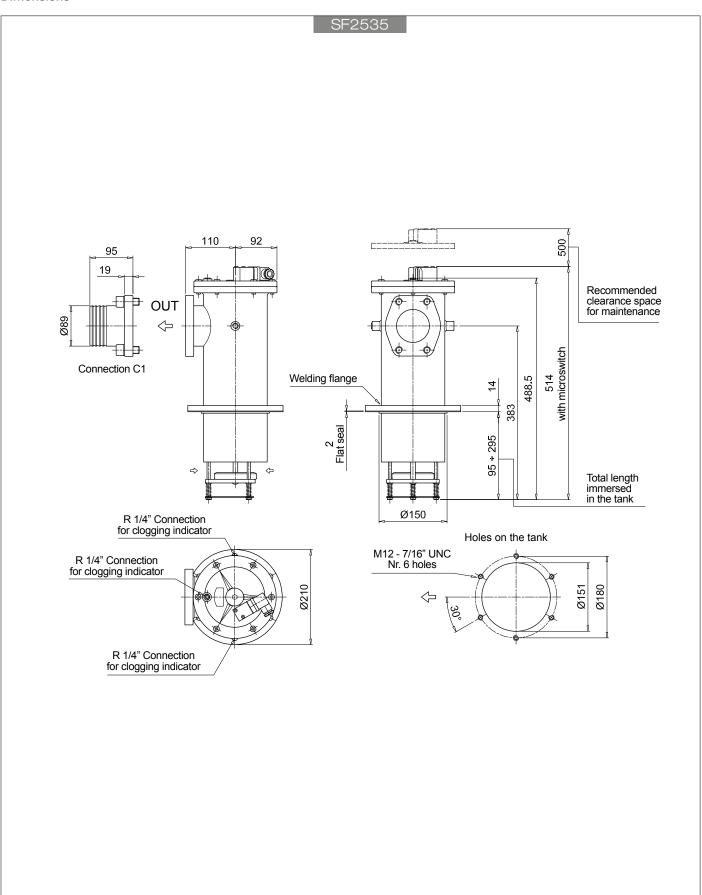

								FILTER	R ELEMENT
Elemei	nt series a	nd size							Configuration example 1: SF510 M25 W
	SF2500		SF2503	SF2504	SF2505	SF2510	SF2535	SF2540	Configuration example 2: SF535 M60
F503	-	-	•	-	-	-	-	-	
F504	-	-	-	•	-	-	-	-	
F505	-	-	-	-	•	-	-	-	
F510	•	•	-	-	-	•	-	-	
F535	-	-	-	-	-	-	•	-	
SF540	-	-	-	-	-	-	-	•	
	on rating								
	Wire mes			M90		esh 90	•		
160	Wire mes	sh 60 µi	m	M250) Wire m	esh 250	μm		
Seals a	and treatn	nents							
	tandard v								
N C	ompatible	with flu	iids HFA-	HFB-HFC	;				Execution
									P01 MP Filtri stand
									Pxx Customized


	ATORS	See page 709		
VEA	Electrical vacuum indicator	VVA	Axial vacuum gauge	
VLA	Electrical / visual vacuum indicator	VVR	Radial vacuum gauge	

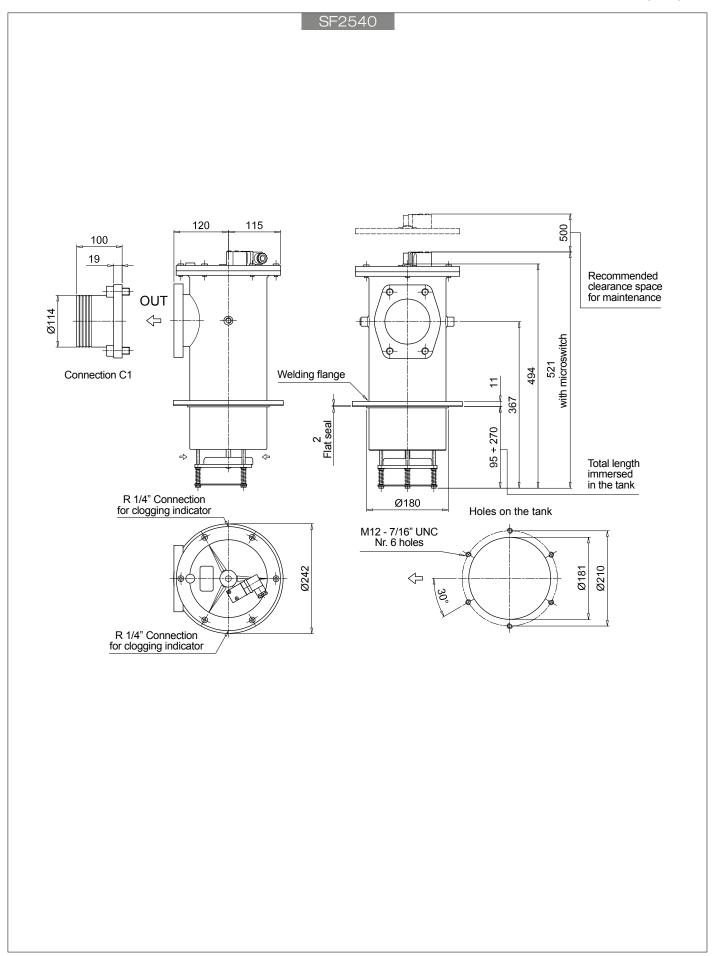
(62)

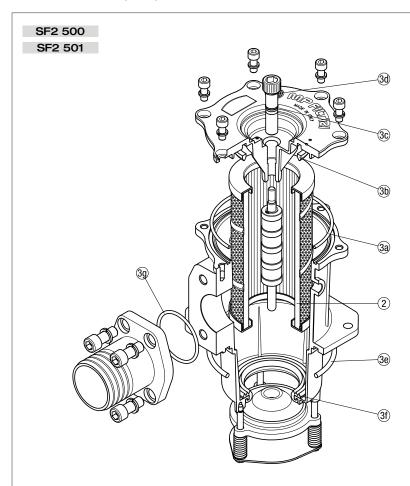


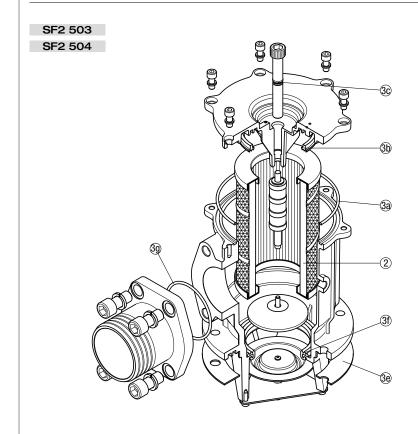




(64)

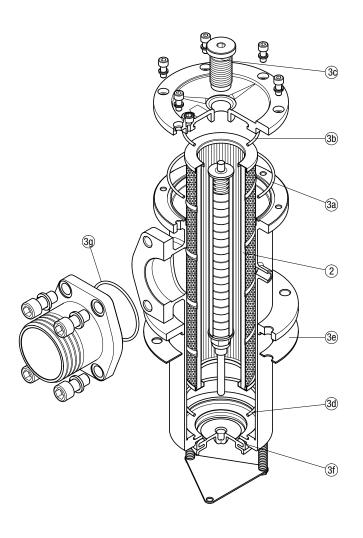

SF2 500

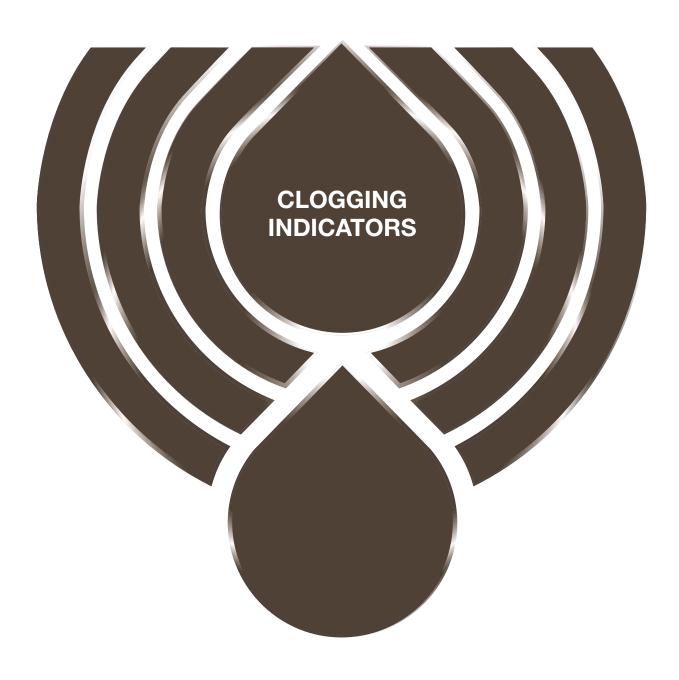




(66)

SF2 500 spare parts




Item:	Q.ty: 1 pc.	Q.ty: 1 pc. (3a ÷ 3g)		
Filter series	Filter element	Seal Kit code number NBR FPM		
SF2 500	See order table	02050141	02050142	
SF2 501		02050143	02050144	
SF2 503		02050070	02050071	
SF2 504		02050072	02050073	

SPARE PARTS SF2 500

Item:	Q.ty: 1 pc.	Q.ty: 1 pc. (3a ÷ 3g)		
Filter series	Filter element	Seal Kit code number NBR FPM		
SF2 505	See order table	02050043	02050044	
SF2 510		02050045	02050046	
SF2 535		02050051	02050052	
SF2 540		02050053	02050054	

Clogging indicators are devices that check the life time of the filter elements. They measure the pressure drop through the filter element directly connected to the filter housing.

These devices trip when the clogging of the filter element causes a pressure drop increasing across the filter element.

Filter elements are efficient only if their Dirt Holding Capacity is fully exploited. This is achieved by using filter housings equipped with clogging indicators.

The indicator is set to alarm before the element becomes fully clogged.

MP Filtri can supply indicators of the following designs:

- Vacuum switches and gauges
- Pressure switches and gauges
- Differential pressure indicators

These type of devices can be provided with a visual, electrical or both signals. The electronic differential pressure clogging indicator is also available. It provides both analogical 4-20 mA output and digital warning (75% of clogging) and alarm (clogging) outputs.

In the following pages you can find a reference guide about the types of clogging indicators available in the different families of MP Filtri's Hydraulic Filtration range of products.

Clogging Indicators

DESIGNATION, ORDERING CODES & TECHNICAL DATA

INDEX

	Pag
QUICK REFERENCE GUIDE	704
CLOGGING INDICATORS ORDERING CODES	
SUCTION FILTERS INDICATORS	709
RETURN FILTERS INDICATORS	710
RETURN / SUCTION FILTERS INDICATORS	712
SPIN-ON FILTERS INDICATORS	714
LOW & MEDIUM PRESSURE FILTERS INDICATORS	716
HIGH PRESSURE FILTERS INDICATORS	717
STAINLESS STEEL HIGH PRESSURE FILTERS INDICATORS	718
FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE INDICATORS	719
TECHNICAL DATA	
VACUUM INDICATORS	720
DARONETRIO (PRESCUERE INDICATORO	700
BAROMETRIC (PRESSURE) INDICATORS	722
DIFFERENTIAL PRESSURE INDICATORS	726
DITICS	797

Ordering codes

Filter family	Filter sei	ries	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
SUCTION FILTERS	With bypass valve	ELIXIR* SFEX060-080-110-160	VVB20P01 VVS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01
SUCT	0.3 bar	SF2 250 - 350 SF2 500 - 501 - 503 - 504 - 505 SF2 510 - 535 - 540	VVA20P01 VVR20P01	VEA21xA50P01 VEA21xA50P01UL	VLA21xA51P01 VLA21xA52P01 VLA21xA53P01 VLA21xA71P01
	With bypass 1.75 bar	ELIXIR* RFEX060-080-110-160	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEA15HA50P01UL BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
RETURN FILTERS	Without bypass	ELIXIR* RFEX060-080-110-160	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEA20HA50P01UL BEM20HA41P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
	With bypass 1.75 bar	MDH 250	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01 DVS12HP01	BEA15HA50P01 BEA15HA50P01UL BEM15HA41P01 DES12HA10P01 DES12HA30P01 DES12HA80P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
	With bypass 3 bar	MDH 250	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEA20HA50P01UL BEM20HA41P01 DES25HA10P01 DES25HA30P01 DES25HA80P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
	With bypass 1.75 bar	MPFX MPTX MPF MPT MPH	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEA15HA50P01UL BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
	With bypass 3 bar With bypass 2.5 bar	MPFX MPTX MPF MPT MPH	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEA20HA50P01UL BEM20HA41P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
	With bypass 4.5 bar	MPLX	DVA20xP01	DEA20xA50P01 DEA20xA50P01UL DEM20xx10P01	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01
	With bypass 2.4 bar	FRI	DVM20xP01	DEM20xx20P01 DEM20xx30P01 DEM20xx35P01 DEU20xA50P01UL	DLE20xA50P01 DLE20xF50P01 DTA20xF70P01

QUICK REFERENCE GUIDE

Ordering codes

Filter family	Filter seri	es	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
RETURN / SUCTION FILTERS	With bypass valve 2.5 bar	MRSX 116 - 165 - 166 Suction line	VVB20P01 VVS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01
		MRSX 116 - 165 - 166 Return line	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEA20HA50P01UL BEM20HA41P01 BET25HF10P01 BET25HF30P01 BET25HF50P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
	With bypass valve 2.5 bar	LMP 124 MULTIPORT	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01 DVA20xP01 DVM20xP01	BEA20HA50P01 BEA20HA50P01UL BEM20HA41P01 BET25HF10P01 BET25HF30P01 BET25HF50P01 DEA20xA50P01 DEM20xx10P01 DEM20xx20P01 DEM20xx30P01 DEM20xx35P01 DEU20xA50P01UL	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01 DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01
SPIN-ON FILTERS	Suction line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350	WB20P01 WS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01
	Return line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350 MST 050 - 070 - 100 - 150	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEA15HA50P01UL BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
	In-line	MPS 051 - 071 - 101 - 151 MPS 301 - 351 MSH 050 - 070 - 100 - 150	DVA12xP01 DVM12xP01	DEA12xA50P01 DEM12xAxxP01 DEU20xA50P01UL	DLA12xA51P01 DLA12xA52P01 DLA12xA71P01 DLE12xA50P01 DLE12xF50P01 DLE20xF50P01 DLE20xF50P01 DTA12xF70P01 DTA20xF70P01

Ordering codes

Filter family	Filter s	eries	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
		ELIXIR* LFEX060-080-110-160	DVS25HP01	DES25HA10P01 DES25HA30P01 DES25HA80P01	
√ :RS	With bypass valve 3.5 bar	LMP 110 LMP 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD	DVA20xP01 DVM20xP01	DEA20xA50P01 DEM20xx10P01 DEM20xx20P01 DEM20xx30P01 DEM20xx35P01 DEU20xA50P01UL	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01 DTA20xF70P01
LOW & MEDIUM PRESSURE FILTERS	With bypass valve 2.5 bar	LPH 630	DVA20xP01 DVM20xP01	DEA20xA50P01 DEM20xx10P01 DEM20xx20P01 DEM20xx30P01 DEM20xx35P01 DEU20xA50P01UL	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01 DTA20xF70P01
	With bypass valve 1.75 bar	LPH 630	DVA12xP01 DVM12xP01 DVS12HP01	DEA12xA50P01 DEM12xx10P01 DEM12xx20P01 DEM12xx30P01 DEM12xx35P01	DLA12xA51P01 DLA12xA52P01 DLA12xA71P01 DLE12xA50P01 DLE12xF50P01 DTA12xF70P01
		ELIXIR* LFEX060-080-110-160	DVS40HP01	DES40HA10P01 DES40HA30P01 DES40HA80P01	
	Without bypass valve	LMP 110 LMP 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD LPH 630	DVA50xP01 DVM50xP01	DEA50xA50P01 DEM50xx10P01 DEM50xx20P01 DEM50xx30P01 DEM50xx35P01 DEU50xA50P01UL	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01 DTA50xF70P01
	With bypass valve 6 bar	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 350 - 351 - 500 FMMX 050 FMM 050 - 150 FHA 051 FHM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DVA50xP01 DVM50xP01	DEA50xA50P01 DEM50xx10P01 DEM50xx20P01 DEM50xx30P01 DEM50xx35P01 DEU50xA50P01UL	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01
HIGH PRESSURE FILTERS	Without bypass valve	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 350 - 351 - 500 FMMX 050 FMM 050 - 150 FHA 051 FHM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DVA70xP01 DVA95xP01 DVM70xP01 DVM95xP01	DEA70xA50P01 DEA95xA50P01 DEM70xx10P01 DEM70xx20P01 DEM70xx30P01 DEM70xx35P01 DEU70xA50P01UL DEM95xx10P01 DEM95xx20P01 DEM95xx30P01 DEM95xx35P01	DLA70xA51P01 DLA70xA52P01 DLA70xA71P01 DLA95xA51P01 DLA95xA52P01 DLA95xA71P01 DLE70xA50P01 DLE70xF50P01 DLE95xA50P01 DLE95xF50P01 DTA70xF70P01 DTA95xF70P01

MPFILTRI

QUICK REFERENCE GUIDE

Ordering codes

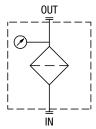
Filter family	Filter seri	es	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
STAINLESS STEEL HIGH PRESSURE FILTERS	With bypass valve 6 bar	FZH 012 - 040	DVZ50xP01	DEZ50xA50P01	DLZ50xA51P01 DLZ50xA52P01
	Without bypass valve	FZH 012 - 040	DVZ70xP01 DVZ95xP01	DEZ70xA50P01 DEZ95xA50P01	DLZ70xA51P01 DLZ70xA52P01 DLZ95xA51P01 DLZ95xA52P01
	With bypass valve 6 bar	FZP 039 - 136 FZB 039 FZM 039 FZD 051	DVX50xP01 DVY50xP01	DEX50xA50P01	DLX50xA51P01 DLX50xA52P01
	Without bypass valve	FZP 039 - 136 FZB 039 FZM 039 FZD 010 - 021 - 051	DVX70xP01 DVX95xP01 DVY70xP01 DVY95xP01	DEX70xA50P01 DEX95xA50P01	DLX70xA51P01 DLX70xA52P01 DLX95xA51P01 DLX95xA52P01
FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE	With bypass valve 6 bar	FMMX 050	DVA50xP01 DVM50xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01	
	Without bypass valve	FMMX 050	DVA70xP01 DVA95xP01 DVM70xP01 DVM95xP01	DEH70xA48P01 DEH70xA49P01 DEH70xA70P01 DEH95xA48P01 DEH95xA49P01 DEH95xA70P01	
	With bypass valve 6 bar	FZP 039 - 136	DVX50xP01 DVY50xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01	
	Without bypass valve	FZP 039 - 136	DVX70xP01 DVX95xP01 DVY70xP01 DVY95xP01	DEH70xA48P01 DEH70xA49P01 DEH70xA70P01 DEH95xA48P01 DEH95xA49P01 DEH95xA70P01	
	With bypass valve 6 bar	FZH 012 - 040	DVZ50xP01		
	Without bypass valve	FZH 012 - 040	DVZ70xP01 DVZ95xP01		

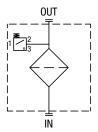
Suitable indicator types

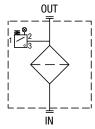
V ACUUM INDICATORS

Vacuum indicators are used on the Suction line to check the efficiency of the filter element.

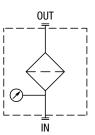
They measure the pressure downstream of the filter element.

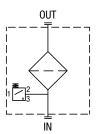

Standard items are produced with R 1/4" EN 10226 connection.

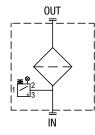

Available products with R 1/8" EN 10226 to be fitted on MPS series.


Vacuum indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "V".

Example:




B AROMETRIC (PRESSURE) INDICATORS

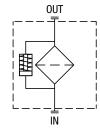

Pressure indicators are used on the Return line to check the efficiency of the filter element. They measure the pressure upstream of the filter element.

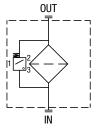
Standard items are produced with R 1/8" EN 10226 connection.

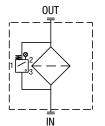
Barometric (pressure) indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "B"

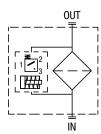
Example:

B BVA14P01

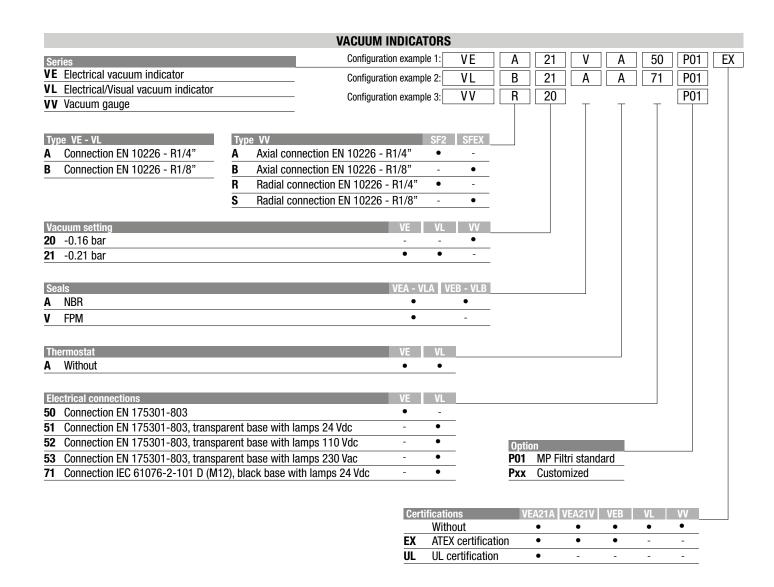

D IFFERENTIAL PRESSURE INDICATORS


Differential pressure indicators are used on the Pressure line to check the efficiency of the filter element.

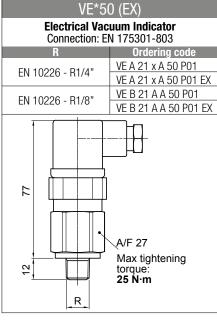

They measure the pressure upstream and downstream of the filter element (differential pressure).


Standard items are produced with special connection G 1/2" size.

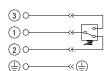
Also available in Stainless Steel models. Differential pressure indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "D"



Example


D DVA20xP01

Designation & Ordering code


Technical data

Hydraulic symbol

Electrical symbol

- Certification: ATEX, IECEx
- Certification included in EX version

Materials

- Body: Brass - Base: Black polyamide - Contacts: Silver - Seal: VEA: NBR/FPM VEB: NBR

Technical data

- Vacuum setting: 0.21 bar ±10% - Max working pressure: 10 bar - Proof pressure: 15 bar

- Working temperature: From -25 °C to +80 °C - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943

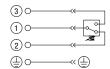
- Degree of protection: IP65 according to EN 60529

Electrical data

- Electrical connection: EN 175301-803 - Resistive load: 5 A / 14 Vdc 4 A / 30 Vdc 5 A / 125 Vac

4 A / 250 Vac

- CE certification


- Available Atex product: II 1GD Ex ia IIC Tx Ex ia IIIC Tx °C X

VEA50 UL **Electrical Vacuum Indicator** Connection: EN 175301-803 Ordering code EN 10226 - R1/4" VE A 21 A A 50 P01 UL 77 VF 27

Hydraulic symbol

Electrical symbol

- Certification: UL
- Certification included in EX version

Materials

- Body: Brass - Base: Black polyamide - Contacts: Silver VEA: NBR/FPM - Seal: VEB: NBR

Technical data

- Vacuum setting: 0.21 bar ±10% - Max working pressure: 10 bar - Proof pressure: 15 bar

From -25 °C to +80 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943 - Degree of protection: IP65 according to EN 60529

Electrical data

- Electrical connection: EN 175301-803 - Resistive load: 5 A / 14 Vdc 4 A / 30 Vdc

5 A / 125 Vac 4 A / 250 Vac

- CF certification

- Available Atex product: II 1GD Ex ia IIC Tx Ex ia IIIC Tx °C X

VL*51 - VL*52 - VL*53

R

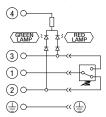
Max tightening

Ordering code

torque:

25 N⋅m

Electrical/Visual Vacuum Indicator Connection: EN 175301-803


- 51: Transparent base with lamps 24 Vdc
- 52: Transparent base with lamps 110 Vdc
- 53: Transparent base with lamps 230 Vac

EN 10226 - R1/4"	VL A 21 x A xx P01
EN 10226 - R1/8"	VL B 21 A A xx P01
<i>TT</i>	
22	A/F 27 Max tightening torque: 25 N·m

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass

- Base: Transparent polyamide Brass - Polvamide - Contacts: VLA: NBR/FPM - Seal: VLB: NBR

Technical data

- Vacuum setting: 0.21 bar ±10% - Max working pressure: 10 bar - Proof pressure: 15 har - Working temperature:

From -25 °C to +80 °C - Compatibility with fluids: Mineral oils, Synthetic fluids HFB and HFC according to ISO 2943

- Degree of protection: IP65 according to EN 60529

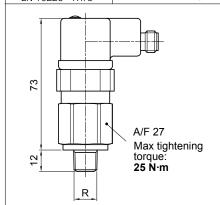
Electrical data

- Electrical connection: EN 175301-803

- Type 51 110 Vdc 230 Vac - Lamps 24 Vdc - Resistive load: 1 A / 24 Vdc 1 A / 110 Vdc 1 A / 230 Vac

720

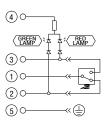
R


12

Technical data

VL*71

Electrical/Visual Vacuum Indicator Connection IEC 61076-2-101 D (M12), black base with lamps 24 Vdc


Connections	Indicator code
EN 10226 - R1/4"	VL A 21 x A 71 P01
FN 10226 - R1/8"	VL B 21 A A 71 P01

Hydraulic symbol

Electrical symbol

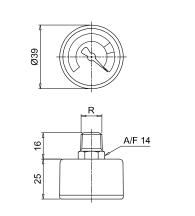
Materials

Body: Brass
Base: Black polyamide
Contacts: Silver
Seal: VLA: NBR/FPM

seai: VLA: NBR/ VLB: NBR

Technical data

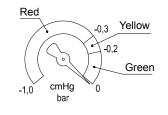
Vacuum setting: 0.21 bar ±10%
Max working pressure: 10 bar
Proof pressure: 15 bar


Working temperature: From -25 °C to +80 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids

HFB and HFC according to ISO 2943
- Degree of protection: IP65 according to EN 60529

Electrical data

- Electrical connection: IEC 61076-2-101 D (M12)
- Lamps 24 Vdc (black base)
- Resistive load: 0.4 A / 24 Vdc


VVA - VVB			
Axial Vacuum Gauge			
R	Ordering code		
EN 10226 - R1/4"	VVA 20 P01		
EN 10226 - R1/8"	VVB 20 P01		

Hydraulic symbol

Dial scale

Conversion	to SI units
[amHa]	[hor]

[cmHg]	[bar]
-12	-0.16
-18	-0.24
-76	-1.01

Materials

Case: Black plastic
Window: Clear plastic
Dial: White plastic
Pointer: Black plastic
Pressure connection: Cu-alloy

- Pressure element: Bourdon tube Cu-alloy soft soldered, C type

- Movement: Cu-alloy

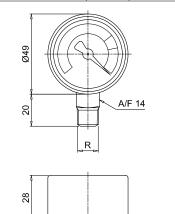
Technical data

- Max working pressure: Steady: -0.7 bar

Fluctuating: -0.6 bar Short time: -1.0 bar

- Working temperature: Ambienti from -40 °C to +60 °C

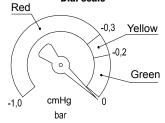
Fluid max + 60 °C


 $Storage\ from\ -40\ ^{\circ}C\ to\ +60\ ^{\circ}C$ - Compatibility with fluids: Mineral oils, Synthetic fluids

HFB and HFC according to ISO 2943
- Accuracy: Class 2.5 according to EN 13190

- Accuracy: Class 2.5 according to EN 13
- Degree of protection: IP31 according to EN 60529

VVR - VVS Radial Vacuum Gauge


R A/F Ordering code EN 10226 - R1/4" 14 VVR 20 P01 EN 10226 - R1/8" 11 VVS 20 P01

Hydraulic symbol

Dial scale

Conversion to SI units

[cmHg]	[bar]
-12	-0.16
-18	-0.24
76	_1 01

Materials

- Case: Black plastic
- Window: Clear plastic
- Dial: White plastic
- Pointer: Black plastic
- Pressure connection: Cu-alloy

- Pressure element: Bourdon tube Cu-alloy soft soldered, C type

- Movement: Cu-alloy

Technical data

- Max working pressure: Steady: -0.7 bar

Fluctuating: -0.6 bar Short time: -1.0 bar

- Working temperature: Ambienti from -40 °C to +60 °C

Fluid max + 60 °C

Storage from -40 °C to +60 °C Mineral oils, Synthetic fluids

- Compatibility with fluids: Mineral oils, Synthetic fluids
HFB and HFC according to ISO 2943
- Accuracy: Class 2.5 according to EN 13190

Accuracy: Class 2.5 according to EN 1319
 Degree of protection: IP31 according to EN 60529

All data, details and words contained in this publication are provided for use by technically qualified personnel at their discretion, without warranty of any kind.

MP Filtri reserves the right to make modifications to the models and versions of the described products at any time for both technical and/or commercial reasons.

For updated information please visit our website: www.mpfiltri.com

The colors and the pictures of the products are purely indicative.

Any reproduction, partial or total, of this document is strictly forbidden.

All rights are strictly reserved

WORLDWIDE NETWORK

CANADA ♦ CHINA ♦ FRANCE ♦ GERMANY ♦ INDIA ♦ SINGAPORE UNITED ARAB EMIRATES ♦ UNITED KINGDOM ♦ USA

PASSION TO PERFORM

